This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303877 #28 Jan 20 2019 23:20:40 %S A303877 3,0,1,1,0,2,1,1,1,0,0,2,0,2,2,1,1,3,0,0,0,1,0,2,0,0,0,2,1,0,2,2,2,2, %T A303877 1,2,2,1,2,0,2,0,1,2,1,2,0,2,0,0,0,0,0,1,2,2,2,2,1,2,1,0,1,2,0,0,0,0, %U A303877 2,2,1,1,0,0,2,2,1,0,0,2,0,0,1,0,1,0,2,2,1,0,0,1,1,0,2,2,0,2,2,0,2,0,2,1,1 %N A303877 Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1). %C A303877 Using a simple greedy algorithm. %C A303877 Apart from a leading 3 the same as A188921. - _R. J. Mathar_, May 07 2018 %H A303877 Simon Plouffe, <a href="http://vixra.org/pdf/1408.0193v1.pdf">Generalized expansion of real numbers</a>, 2006-2014 %e A303877 1 = 0.30110211100202211300010200021022221221202..._{Pi} %p A303877 r2bk:=proc(s, b) %p A303877 local i, j, v, premier, fin, lll, liste, w, baz; %p A303877 baz := evalf(b); %p A303877 v := abs(evalf(s)); %p A303877 fin := trunc(evalf(Digits/log10(b))) - 10; %p A303877 lll := [seq(baz^j, j = 1 .. fin)]; %p A303877 liste := []; %p A303877 for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do; %p A303877 RETURN(liste) %p A303877 end; %p A303877 # enter a real number s and a base b > 1; b can be a real number, too. %Y A303877 Cf. A000796, A188921, A232325, A283735. %K A303877 nonn,cons,base %O A303877 0,1 %A A303877 _Simon Plouffe_, May 02 2018