cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303877 Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1).

This page as a plain text file.
%I A303877 #28 Jan 20 2019 23:20:40
%S A303877 3,0,1,1,0,2,1,1,1,0,0,2,0,2,2,1,1,3,0,0,0,1,0,2,0,0,0,2,1,0,2,2,2,2,
%T A303877 1,2,2,1,2,0,2,0,1,2,1,2,0,2,0,0,0,0,0,1,2,2,2,2,1,2,1,0,1,2,0,0,0,0,
%U A303877 2,2,1,1,0,0,2,2,1,0,0,2,0,0,1,0,1,0,2,2,1,0,0,1,1,0,2,2,0,2,2,0,2,0,2,1,1
%N A303877 Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1).
%C A303877 Using a simple greedy algorithm.
%C A303877 Apart from a leading 3 the same as A188921. - _R. J. Mathar_, May 07 2018
%H A303877 Simon Plouffe, <a href="http://vixra.org/pdf/1408.0193v1.pdf">Generalized expansion of real numbers</a>, 2006-2014
%e A303877 1 = 0.30110211100202211300010200021022221221202..._{Pi}
%p A303877 r2bk:=proc(s, b)
%p A303877 local i, j, v, premier, fin, lll, liste, w, baz;
%p A303877     baz := evalf(b);
%p A303877     v := abs(evalf(s));
%p A303877     fin := trunc(evalf(Digits/log10(b))) - 10;
%p A303877     lll := [seq(baz^j, j = 1 .. fin)];
%p A303877     liste := [];
%p A303877     for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do;
%p A303877     RETURN(liste)
%p A303877 end;
%p A303877 # enter a real number s and a base b > 1; b can be a real number, too.
%Y A303877 Cf. A000796, A188921, A232325, A283735.
%K A303877 nonn,cons,base
%O A303877 0,1
%A A303877 _Simon Plouffe_, May 02 2018