This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303901 #39 Mar 17 2025 02:39:52 %S A303901 1,3,-2,9,-12,4,27,-54,36,-8,81,-216,216,-96,16,243,-810,1080,-720, %T A303901 240,-32,729,-2916,4860,-4320,2160,-576,64,2187,-10206,20412,-22680, %U A303901 15120,-6048,1344,-128,6561,-34992,81648,-108864,90720,-48384,16128,-3072,256,19683,-118098,314928,-489888,489888,-326592,145152,-41472,6912,-512 %N A303901 Triangle read by rows of coefficients in expansion of (3-2x)^n, where n is a nonnegative integer. %C A303901 This is a signed version of A038220. %C A303901 Row n gives coefficients in expansion of (3-2x)^n. %C A303901 The numbers in rows of triangles in A302747 and A303941 are along skew diagonals pointing top-left and top-right in center-justified triangle of coefficients in expansions of (3-2x)^n (A303901). %C A303901 This is the lower triangular Riordan matrix (1/(1-3*t), -2*t/(1-3*t)), hence a convolution matrix. See the g.f.s. - _Wolfdieter Lang_, Jun 28 2018 %D A303901 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 394, 396, 398. %H A303901 Zagros Lalo, <a href="/A303901/a303901_1.pdf">Center-justified Triangle</a> %H A303901 Zagros Lalo, <a href="/A303901/a303901_2.pdf">Skew Diagonals in center-justified Triangle</a> %F A303901 T(0,0) = 1; T(n,k) = 3*T(n-1,k) - 2*T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0. %F A303901 G.f. of row polynomials: 1 / (1 - 3*t + 2*t*x). %F A303901 G.f. of column k: (-2*x)^k/(1-3*x)^(k+1), for k >= 0. %e A303901 Triangle begins: %e A303901 n \k 0 1 2 3 4 5 6 7 8 9 ... %e A303901 -------------------------------------------------------------------------- %e A303901 0 | 1 %e A303901 1 | 3 -2 %e A303901 2 | 9 -12 4 %e A303901 3 | 27 -54 36 -8 %e A303901 4 | 81 -216 216 -96 16 %e A303901 5 | 243 -810 1080 -720 240 -32 %e A303901 6 | 729 -2916 4860 -4320 2160 -576 64 %e A303901 7 | 2187 -10206 20412 -22680 15120 -6048 1344 -128 %e A303901 8 | 6561 -34992 81648 -108864 90720 -48384 16128 -3072 256 %e A303901 9 | 19683 -118098 314928 -489888 489888 -326592 145152 -41472 6912 -512 %t A303901 For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(3 - 2 x)^i],x]]] %Y A303901 Cf. A013620 (unsigned), A000012 (row sums), A000351 (alternating row sums). %K A303901 tabl,easy,sign %O A303901 0,2 %A A303901 _Zagros Lalo_, May 02 2018 %E A303901 Edited - _Wolfdieter Lang_, Jun 28 2018