This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303902 #6 May 04 2018 06:54:57 %S A303902 1,0,1,3,3,8,12,21,34,59,93,150,242,377,595,922,1419,2171,3310,4988, %T A303902 7507,11218,16674,24676,36353,53295,77828,113209,163989,236736,340517, %U A303902 488108,697407,993350,1410455,1996968,2819280,3969260,5573541,7806141,10905640,15199138,21133212 %N A303902 Expansion of (1 - x^2)*Product_{k>=2} (1 + x^k)^k. %C A303902 First differences of A026007. %H A303902 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A303902 G.f.: (1 - x)*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). %F A303902 a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * Zeta(3)^(1/2) / (2^(13/12) * sqrt(Pi) * n). - _Vaclav Kotesovec_, May 04 2018 %t A303902 nmax = 42; CoefficientList[Series[(1 - x^2) Product[(1 + x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x] %t A303902 nmax = 42; CoefficientList[Series[(1 - x) Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x] %Y A303902 Cf. A002865, A026007, A087897, A191659, A298598, A302832. %K A303902 nonn %O A303902 0,4 %A A303902 _Ilya Gutkovskiy_, May 02 2018