This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303909 #7 Feb 16 2025 08:33:54 %S A303909 1,0,0,0,1,1,1,1,2,4,5,6,8,13,19,26,36,51,74,105,148,208,296,421,597, %T A303909 846,1198,1699,2409,3417,4843,6865,9732,13799,19566,27739,39325,55749, %U A303909 79041,112063,158877,225241,319331,452734,641866,910001,1290137,1829079,2593169,3676457,5212266 %N A303909 Expansion of 2*(1 - x)/(3 - theta_3(x)), where theta_3() is the Jacobi theta function. %C A303909 First differences of A006456. %H A303909 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %H A303909 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A303909 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A303909 G.f.: (1 - x)/(1 - Sum_{k>=1} x^(k^2)). %p A303909 b:= proc(n) option remember; `if`(n<0, 0, %p A303909 `if`(n=0, 1, add(b(n-j^2), j=1..isqrt(n)))) %p A303909 end: %p A303909 a:= n-> b(n)-`if`(n=0, 0, b(n-1)): %p A303909 seq(a(n), n=0..60); # _Alois P. Heinz_, May 02 2018 %t A303909 nmax = 50; CoefficientList[Series[2 (1 - x)/(3 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x] %t A303909 nmax = 50; CoefficientList[Series[(1 - x)/(1 - Sum[x^k^2, {k, 1, nmax}]), {x, 0, nmax}], x] %t A303909 a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Differences[Table[a[n], {n, -1, 50}]] %Y A303909 Cf. A000290, A006456, A078134, A303667. %K A303909 nonn %O A303909 0,9 %A A303909 _Ilya Gutkovskiy_, May 02 2018