This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303930 #25 Oct 06 2018 14:30:13 %S A303930 1,2,4,10,26,76,232,750,2493,8514,29524,103708,367225,1308542,4682276, %T A303930 16807286,60462082,217855460,785863048,2837177434,10249053629, %U A303930 37039804078,133902392980,484178868612,1751030978481,6333341963706,22909148647012,82872738727330 %N A303930 Number of no-leaf subgraphs of the 2 X n grid up to horizontal and vertical reflection. %C A303930 The limit lim_{n -> infinity} A020876(n - 1)/a(n) = 4. %H A303930 Peter Kagey, <a href="/A303930/b303930.txt">Table of n, a(n) for n = 1..1000</a> %F A303930 Conjectures from _Colin Barker_, May 03 2018: (Start) %F A303930 G.f.: x*(1 - 6*x + 4*x^2 + 30*x^3 - 45*x^4 - 22*x^5 + 60*x^6 - 20*x^7) / ((1 - 3*x + x^2)*(1 - 5*x + 5*x^2)*(1 - 5*x^2 + 5*x^4)). %F A303930 a(n) = 8*a(n-1) - 16*a(n-2) - 20*a(n-3) + 95*a(n-4) - 60*a(n-5) - 80*a(n-6) + 100*a(n-7) - 25*a(n-8) for n>8. %F A303930 (End) %e A303930 For n = 4 the a(4) = 10 subgraphs of the 2 X 4 grid are: %e A303930 + + + + +---+ + + + +---+ + %e A303930 | | | | %e A303930 + + + +, +---+ + +, + +---+ +, %e A303930 +---+ +---+ +---+---+ + +---+---+---+ %e A303930 | | | | | | | | | %e A303930 +---+ +---+, +---+---+ +, +---+---+---+, %e A303930 +---+---+---+ +---+---+---+ +---+---+---+ %e A303930 | | | | | | | | | | %e A303930 +---+---+---+, +---+---+---+, +---+ +---+, and %e A303930 +---+---+ + %e A303930 | | | %e A303930 +---+---+ +. %Y A303930 Cf. A020876, A301976. %Y A303930 A093129 is analogous for 2 X (n+1) grids where reflections are considered distinct. %K A303930 nonn %O A303930 1,2 %A A303930 _Peter Kagey_, May 02 2018