This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303941 #53 Jan 26 2024 16:02:15 %S A303941 1,3,9,-2,27,-12,81,-54,4,243,-216,36,729,-810,216,-8,2187,-2916,1080, %T A303941 -96,6561,-10206,4860,-720,16,19683,-34992,20412,-4320,240,59049, %U A303941 -118098,81648,-22680,2160,-32,177147,-393660,314928,-108864,15120,-576,531441,-1299078,1180980,-489888,90720,-6048,64 %N A303941 Triangle read by rows: T(0,0) = 1; T(n,k) = 3*T(n-1,k) - 2*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. Triangle of coefficients of Fermat polynomials. %C A303941 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A303901 ((3-2x)^n). %C A303941 Row n gives coefficients of Fermat polynomial. %C A303941 The coefficients in the expansion of 1/(1-3x+2x^2) are given by the sequence generated by the row sums. %D A303941 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 104, 394, 395. %H A303941 Zagros Lalo, <a href="/A303941/a303941.pdf">Left-justified triangle</a> %H A303941 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FermatPolynomial.html">Fermat Polynomial</a>. %e A303941 Triangle begins: %e A303941 n\k | 0 1 2 3 4 5 6 7 %e A303941 ----+-------------------------------------------------------------------- %e A303941 0| 1 %e A303941 1| 3 %e A303941 2| 9 -2 %e A303941 3| 27 -12 %e A303941 4| 81 -54 4 %e A303941 5| 243 -216 36 %e A303941 6| 729 -810 216 -8 %e A303941 7| 2187 -2916 1080 -96 %e A303941 8| 6561 -10206 4860 -720 16 %e A303941 9| 19683 -34992 20412 -4320 240 %e A303941 10| 59049 -118098 81648 -22680 2160 -32 %e A303941 11| 177147 -393660 314928 -108864 15120 -576 %e A303941 12| 531441 -1299078 1180980 -489888 90720 -6048 64 %e A303941 13| 1594323 -4251528 4330260 -2099520 489888 -48384 1344 %e A303941 14| 4782969 -13817466 15588936 -8660520 2449440 -326592 16128 -128 %e A303941 15|14348907 -44641044 55269864 -34642080 11547360 -1959552 145152 -3072 %t A303941 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 3 t[n - 1, k] - 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}] // Flatten %o A303941 (PARI) T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 3*T(n-1,k) - 2*T(n-2,k-1))); %o A303941 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018 %Y A303941 Row sums give A000225. %Y A303941 Some row sums give A001348. %Y A303941 Cf. A303901. %K A303941 tabf,easy,sign %O A303941 0,2 %A A303941 _Zagros Lalo_, May 03 2018