A303945 Triangle whose n-th row lists the multiset of prime indices of the n-th number that is not a perfect power A007916(n).
1, 2, 3, 1, 2, 4, 1, 3, 5, 1, 1, 2, 6, 1, 4, 2, 3, 7, 1, 2, 2, 8, 1, 1, 3, 2, 4, 1, 5, 9, 1, 1, 1, 2, 1, 6, 1, 1, 4, 10, 1, 2, 3, 11, 2, 5, 1, 7, 3, 4, 12, 1, 8, 2, 6, 1, 1, 1, 3, 13, 1, 2, 4, 14, 1, 1, 5, 2, 2, 3, 1, 9, 15, 1, 1, 1, 1, 2, 1, 3, 3, 2, 7, 1, 1
Offset: 1
Examples
Sequence of numbers that are not perfect powers together with their multisets of prime indices begins: 2: {1} 3: {2} 5: {3} 6: {1,2} 7: {4} 10: {1,3} 11: {5} 12: {1,1,2} 13: {6} 14: {1,4} 15: {2,3} 17: {7} 18: {1,2,2} 19: {8} 20: {1,1,3} 21: {2,4} 22: {1,5} 23: {9} 24: {1,1,1,2} 26: {1,6} 28: {1,1,4} 29: {10} 30: {1,2,3}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; primeMS/@Select[Range[2,100],GCD@@FactorInteger[#][[All,2]]===1&]
Comments