This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303946 #20 Aug 20 2024 01:59:27 %S A303946 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,90, %T A303946 92,96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,147,148, %U A303946 150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189 %N A303946 Numbers that are neither squarefree nor perfect powers. %C A303946 First differs from A059404 at a(40) = 147, A059404(40) = 144. %C A303946 First differs from A126706 at a(6) = 40, A126706(6) = 36. %H A303946 Robert Israel, <a href="/A303946/b303946.txt">Table of n, a(n) for n = 1..10000</a> %F A303946 a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - _Charles R Greathouse IV_, Jun 01 2018 %p A303946 filter:= proc(n) local F; %p A303946 F:= map(t->t[2],ifactors(n)[2]); %p A303946 max(F)>1 and igcd(op(F))=1 %p A303946 end proc: %p A303946 select(filter, [$1..1000]); # _Robert Israel_, May 06 2018 %t A303946 Select[Range[200], !SquareFreeQ[#] && GCD@@FactorInteger[#][[All, 2]] == 1 &] %o A303946 (PARI) isok(n) = !issquarefree(n) && !ispower(n); \\ _Michel Marcus_, May 05 2018 %o A303946 (Python) %o A303946 from math import isqrt %o A303946 from sympy import mobius, integer_nthroot %o A303946 def A303946(n): %o A303946 def f(x): return int(n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A303946 m, k = n, f(n) %o A303946 while m != k: %o A303946 m, k = k, f(k) %o A303946 return m # _Chai Wah Wu_, Aug 19 2024 %Y A303946 Cf. A000009, A000837, A001597, A005117, A007916, A013929, A047966, A052409, A052410, A072774, A073576, A126706, A132350. %K A303946 nonn %O A303946 1,1 %A A303946 _Gus Wiseman_, May 03 2018