A303950 A fractal-like sequence: erasing all pairs of contiguous terms that sum up to a Fibonacci number leaves the sequence unchanged.
1, 2, 4, 9, 1, 3, 5, 2, 4, 6, 7, 9, 1, 3, 8, 13, 5, 2, 4, 6, 10, 11, 7, 9, 1, 3, 8, 12, 22, 13, 5, 2, 4, 6, 10, 14, 20, 11, 7, 9, 1, 3, 8, 12, 15, 19, 22, 13, 5, 2, 4, 6, 10, 14, 16, 18, 20, 11, 7, 9, 1, 3, 8, 12, 15, 17, 38, 19, 22, 13, 5, 2, 4, 6, 10, 14, 16
Offset: 1
Examples
Parentheses are added around each pair of terms that sum up to a Fibonacci: (1,2), (4,9), 1, (3,5), 2, 4, (6,7), 9, 1, 3, (8,13), 5, 2, 4, 6, (10,11), 7, 9, 1, 3, 8, (12,22), 13, 5, 2, 4, 6, 10, (14,20), 11, ... Erasing all the parenthesized contents yields (...), (...), 1, (...), 2, 4, (...), 9, 1, 3, (....), 5, 2, 4, 6, (.....), 7, 9, 1, 3, 8, (.....), 13, 5, 2, 4, 6, 10, (.....), 11, ... We see that the remaining terms slowly rebuild the starting sequence.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..998
Comments