A303952 a(n) is the number of monic polynomials P(z) of degree n over the complex numbers such that P(z) divides P(z^2).
1, 2, 5, 17, 69, 302, 1367, 6302, 29401, 138356, 655425, 3121439, 14930541, 71675840, 345148893, 1666432817, 8064278289, 39103576700, 189949958333, 924163714217, 4502711570989, 21966152501240, 107284324830303
Offset: 0
Examples
For n = 0, P(z) = 1. For n = 1, P(z) = z or z - 1. For n = 2, P(z) = z^2, z^2 - 1, z^2 - 2z + 1, z^2 + z or z^2 + z + 1.
Programs
-
PARI
x='x+O('x^50); Vec(2*x/(1-6*x+5*x^2+(1+x)*sqrt(1-6*x+5*x^2))+1/(1-x))
Formula
a(n) = Sum_{k=1..n} binomial(n,k)*A014300(k) + 1. The "+1" represents the polynomial P(z) = z^n.
a(n) = A128730(n+1) + 1.
G.f.: 2x/(1-6x+5x^2+(1+x)sqrt(1-6x+5x^2)) + 1/(1-x).
D-finite with recurrence: +2*n*a(n) +(-13*n+4)*a(n-1) +2*(7*n+3)*a(n-2) +8*(n-7)*a(n-3) +2*(-8*n+33)*a(n-4) +5*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 27 2020
D-finite with recurrence 2*n*a(n) +(-11*n+2)*a(n-1) +(3*n+19)*a(n-2) +(11*n-40)*a(n-3) +5*(-n+3)*a(n-4) +4=0. - R. J. Mathar, Aug 01 2022
Comments