cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303976 Number of different aperiodic multisets that fit within some normal multiset of size n.

This page as a plain text file.
%I A303976 #12 Feb 04 2021 16:30:43
%S A303976 1,3,9,26,75,207,565,1518,4044,10703,28234,74277,195103,511902,
%T A303976 1342147,3517239,9214412,24134528,63204417,165505811,433361425,
%U A303976 1134664831,2970787794,7777975396,20363634815,53313819160,139579420528,365427311171,956707667616,2504704955181
%N A303976 Number of different aperiodic multisets that fit within some normal multiset of size n.
%C A303976 A multiset is normal if it spans an initial interval of positive integers. It is aperiodic if its multiplicities are relatively prime.
%H A303976 Andrew Howroyd, <a href="/A303976/b303976.txt">Table of n, a(n) for n = 1..500</a>
%F A303976 a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - _Andrew Howroyd_, Sep 18 2018
%F A303976 G.f.: Sum_{d>=1} mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)). - _Andrew Howroyd_, Feb 04 2021
%e A303976 The a(4) = 26 aperiodic multisets:
%e A303976 (1), (2), (3), (4),
%e A303976 (12), (13), (14), (23), (24), (34),
%e A303976 (112), (113), (122), (123), (124), (133), (134), (223), (233), (234),
%e A303976 (1112), (1123), (1222), (1223), (1233), (1234).
%t A303976 allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
%t A303976 Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&]],{n,10}]
%o A303976 (PARI) seq(n)={Vec(sum(d=1, n, moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x))} \\ _Andrew Howroyd_, Feb 04 2021
%Y A303976 Row sums of A303974.
%Y A303976 Cf. A000740, A000837, A007916, A027941, A178472, A210554, A301700, A303431, A303546, A303551, A303945.
%K A303976 nonn
%O A303976 1,2
%A A303976 _Gus Wiseman_, May 03 2018
%E A303976 Terms a(13) and beyond from _Andrew Howroyd_, Sep 18 2018