cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303986 Triangle of derivatives of the Niven polynomials evaluated at 0.

This page as a plain text file.
%I A303986 #27 May 20 2018 18:33:22
%S A303986 1,1,-2,1,-6,12,1,-12,60,-120,1,-20,180,-840,1680,1,-30,420,-3360,
%T A303986 15120,-30240,1,-42,840,-10080,75600,-332640,665280,1,-56,1512,-25200,
%U A303986 277200,-1995840,8648640,-17297280,1,-72,2520,-55440,831600,-8648640,60540480,-259459200,518918400,1,-90,3960,-110880,2162160,-30270240,302702400,-2075673600,8821612800,-17643225600,1,-110,5940,-205920,5045040,-90810720,1210809600,-11762150400,79394515200,-335221286400,670442572800
%N A303986 Triangle of derivatives of the Niven polynomials evaluated at 0.
%C A303986 The Niven potentials N(n, x) = (1/n!)*x^n*(1 - x)^n = Sum_{k=0..n} (-1)^k * x^(n+k)/((n-k)!*k!), with (n-k)!*k! = A098361(n, k), are used to prove the irrationality of Pi^2 (hence Pi). See the Niven and Havil references.
%C A303986 The row polynomials R(n, x) = Sum_{k=0..n} T(n, k) *x^k are R(n, x) = y_n(-2*x), with the Bessel polynomials of Krall and Frink y_n(x) with coefficients given in A001498. There the references are given. - _Wolfdieter Lang_, May 12 2018
%D A303986 Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
%D A303986 Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
%H A303986 Muniru A Asiru, <a href="/A303986/b303986.txt">Rows n = 0..50</a>
%F A303986 T(n, k) = (d/dx)^(n+k) N(n, x) |_{x=0} =: N^{(n+k)}(n, 0), with N(n, x) = (1/n!)*x^n*(1 - x)^n, for n >= 0, k = 0..n.
%F A303986 N^{(n+k)}(n, 1) = (-1)^(n+k)*T(n, k), which has for even n the unsigned rows, and for odd n the unsigned row entries with negative signs.
%F A303986 T(n, k) = (-1)^k*binomial(n, n-k)*((n+k)!/n!).
%F A303986 T(n, k) = (-1)^k*A113025(n,k) with A113025(n,k) = (n+k)!/(k!*(n-k)!) = abs(A113216(n,k)). - _M. F. Hasler_, May 09 2018
%F A303986 T(n, k) = (-1)^k*Pochhammer(n+1, k)*binomial(n, k). - _Peter Luschny_, May 11 2018
%F A303986 Recurrence: from the one of the row polynomials R(n, x) = y_n(-2*x): R(n, x) = -2*(2*n-1)*x*R(n-1, x) + R(n-2, x), with R(-1, x) = 1 = R(0, x) = 1, n >= 1 (see A001498), this becomes, for n >= 0, k = 0..n:
%F A303986   T(n, k) = 0 for n < k, T(n, -1) = 0, T(0, 0) = 1 = T(1, 0) and otherwise
%F A303986   T(n, k) = -2*(2*n-1)*T(n-1, k-1) + T(n-2, k). - _Wolfdieter Lang_, May 12 2018
%e A303986 The triangle T(n, k) begins:
%e A303986 n\k 0   1    2      3      4        5        6          7         8 ...
%e A303986 0:  1
%e A303986 1:  1  -2
%e A303986 2:  1  -6   12
%e A303986 3:  1 -12   60   -120
%e A303986 4:  1 -20  180   -840   1680
%e A303986 5:  1 -30  420  -3360  15120   -30240
%e A303986 6:  1 -42  840 -10080  75600  -332640    66528
%e A303986 7:  1 -56 1512 -25200 277200 -1995840  8648640  -17297280
%e A303986 8:  1 -72 2520 -55440 831600 -8648640 60540480 -259459200 518918400
%e A303986 ...
%p A303986 T := (n, k) -> (-1)^k*pochhammer(n+1, k)*binomial(n, k):
%p A303986 seq(print(seq(T(n, k), k=0..n)), n=0..9); # _Peter Luschny_, May 11 2018
%o A303986 (PARI) T(n,k)=(-1)^k*binomial(n,n-k)*binomial(n+k,n)*k! \\ _M. F. Hasler_, May 09 2018
%o A303986 (GAP) Flat(List([0..10],n->List([0..n],k->(-1)^k*Binomial(n,n-k)*Factorial(n+k)/Factorial(n)))); # _Muniru A Asiru_, May 15 2018
%Y A303986 Row sums are A002119.
%Y A303986 Cf. A098361, A001498, A113025, A113216.
%K A303986 sign,tabl,easy
%O A303986 0,3
%A A303986 _Wolfdieter Lang_, May 07 2018