cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303994 Numbers whose sum of divisors is the fourth power of one of their divisors.

This page as a plain text file.
%I A303994 #26 Nov 05 2023 15:19:16
%S A303994 1,510,642,3394440,3629640,3653640,3663240,3673080,3701160,3736920,
%T A303994 3901080,3958680,4077960,4137240,4240920,4251480,4256520,4273320,
%U A303994 4274520,4319880,7300854,12798240,13362720,14405664,15170820,16173024,16342368,16354884,16361184,16957668,17113404
%N A303994 Numbers whose sum of divisors is the fourth power of one of their divisors.
%C A303994 Subset of A019422.
%H A303994 Giovanni Resta, <a href="/A303994/b303994.txt">Table of n, a(n) for n = 1..1565</a> (terms < 10^12; first 398 terms from Robert Israel)
%e A303994 Divisors of 510 are 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510 and their sum is 1296 = 6^4.
%p A303994 with(numtheory): P:=proc(q) local a,k,n;
%p A303994 for n from 1 to q do a:=sort([op(divisors(n))]);
%p A303994 for k from 1 to nops(a) do if sigma(n)=a[k]^4 then print(n); break; fi; od; od; end: P(10^9);
%t A303994 Select[Range[17114000],MemberQ[Divisors[#]^4,DivisorSigma[1,#]]&] (* _Harvey P. Dale_, Jul 22 2021 *)
%o A303994 (PARI) isok(n) = (n==1) || (ispower(s=sigma(n), 4) && !(n % sqrtnint(s, 4))); \\ _Michel Marcus_, May 05 2018
%Y A303994 Cf. A000203, A019422, A303123, A303993, A303995, A303996.
%K A303994 nonn
%O A303994 1,2
%A A303994 _Paolo P. Lava_, May 04 2018
%E A303994 More terms from _Michel Marcus_, May 05 2018