cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303995 Numbers whose sum of divisors is the fifth power of one of their divisors.

This page as a plain text file.
%I A303995 #10 May 08 2018 02:43:02
%S A303995 1,3210,3498,3882,6453804,7873684,7943640,8028120,8099880,9112230,
%T A303995 9561990,10079430,182626920,192651480,196192920,199939320,200271960,
%U A303995 201632760,203289240,206367480,206645880,207815160,208955160,210368760,210406680,210717720,211645560
%N A303995 Numbers whose sum of divisors is the fifth power of one of their divisors.
%C A303995 Subset of A019423.
%e A303995 Divisors of 3210 are 1, 2, 3, 5, 6, 10, 15, 30, 107, 214, 321, 535, 642, 1070, 1605, 3210 and their sum is 7776 = 6^5.
%p A303995 with(numtheory): P:=proc(q) local a,k,n;
%p A303995 for n from 1 to q do a:=sort([op(divisors(n))]);
%p A303995 for k from 1 to nops(a) do if sigma(n)=a[k]^5 then print(n); break; fi; od; od; end: P(10^9);
%t A303995 Select[Range[10^4], IntegerQ[t = DivisorSigma[1, #]^(1/5)] && Mod[#, t] == 0 &] (* _Giovanni Resta_, May 04 2018 *)
%o A303995 (PARI) isok(n) = (n==1) || (ispower(s=sigma(n), 5) && !(n % sqrtnint(s, 5))); \\ _Michel Marcus_, May 05 2018
%Y A303995 Cf. A000203, A019423, A303123, A303993, A303994, A303996.
%K A303995 nonn
%O A303995 1,2
%A A303995 _Paolo P. Lava_, May 04 2018
%E A303995 a(13)-a(27) from _Giovanni Resta_, May 04 2018