cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303996 Numbers whose sum of divisors is the sixth power of one of their divisors.

This page as a plain text file.
%I A303996 #10 May 08 2018 02:43:56
%S A303996 1,17490,19410,22578,2823492,162523452,165982908,216731788,221416468,
%T A303996 221940628,226768440,230365560,232815480,234896520,238942920,
%U A303996 240737160,241362120,242067720,242454120,242655720,258182910,264254670,268298190,272819070,277297710,286008510
%N A303996 Numbers whose sum of divisors is the sixth power of one of their divisors.
%C A303996 Subset of A019424.
%e A303996 Divisors of 17490 are 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 53, 55, 66, 106, 110, 159, 165, 265, 318, 330, 530, 583, 795, 1166, 1590, 1749, 2915, 3498, 5830, 8745, 17490 and their sum is 46656 = 6^6.
%p A303996 with(numtheory): P:=proc(q) local a,k,n;
%p A303996 for n from 1 to q do a:=sort([op(divisors(n))]);
%p A303996 for k from 1 to nops(a) do if sigma(n)=a[k]^6 then print(n); break; fi; od; od; end: P(10^9);
%o A303996 (PARI) isok(n) = (n==1) || (ispower(s=sigma(n), 6) && !(n % sqrtnint(s, 6))); \\ _Michel Marcus_, May 05 2018
%Y A303996 Cf. A000203, A019424, A303123, A303993, A303994, A303995.
%K A303996 nonn,easy
%O A303996 1,2
%A A303996 _Paolo P. Lava_, May 04 2018