A304005 Number of nX3 0..1 arrays with every element unequal to 0, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
1, 7, 13, 21, 27, 53, 99, 197, 371, 713, 1365, 2645, 5105, 9857, 19079, 36861, 71379, 138165, 267465, 518201, 1003521, 1944649, 3767939, 7302057, 14153291, 27432325, 53179669, 103092661, 199871009, 387518385, 751360183, 1456897269, 2824988675
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0. .0..1..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0 ..0..1..1. .1..1..1. .0..0..0. .1..1..1. .1..1..1. .1..1..1. .0..0..0 ..1..0..0. .0..0..0. .0..0..0. .1..0..1. .1..1..1. .0..1..0. .0..0..0 ..1..1..0. .0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .1..1..1 ..0..1..0. .1..1..1. .1..1..1. .1..1..1. .0..0..0. .1..0..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A304010.
Formula
Empirical: a(n) = a(n-1) +5*a(n-2) -a(n-3) -12*a(n-4) -2*a(n-5) +10*a(n-6) +2*a(n-7) +a(n-8) +7*a(n-9) -3*a(n-10) -19*a(n-11) -2*a(n-12) +2*a(n-13) -4*a(n-14) +10*a(n-15) +6*a(n-16) for n>17
Comments