This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304031 #25 May 07 2018 03:51:17 %S A304031 0,1,1,3,3,2,2,3,3,4,3,5,4,4,3,4,5,7,4,7,4,8,7,6,7,6,5,5,5,7,5,8,5,5, %T A304031 8,6,9,9,6,8,6,6,7,8,4,7,8,7,3,10,6,7,8,7,7,9,5,8,7,6,5,5,6,3,11,7,9, %U A304031 12,8,12,10,11,11,9,7,9,7,8,8,11,7,11,8,9,15,11,8,9,8,9 %N A304031 Number of ways to write 2*n as p + 2^k + 5^m with p prime and 2^k + 5^m a product of at most three distinct primes, where k and m are nonnegative integers. %C A304031 a(n) > 0 for all 1 < n <= 10^10 with the only exception n = 3114603841, and 2*3114603841 = 6219442049 + 2^3 + 5^10 with 6219442049 prime and 2^3 + 5^10 = 3*17*419*457 squarefree. %C A304031 Note that a(n) <= A303934(n) <= A303821(n). %H A304031 Zhi-Wei Sun, <a href="/A304031/b304031.txt">Table of n, a(n) for n = 1..10000</a> %H A304031 Zhi-Wei Sun, <a href="http://maths.nju.edu.cn/~zwsun/116f.pdf">Mixed sums of primes and other terms</a>, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010. %H A304031 Zhi-Wei Sun, <a href="https://doi.org/10.1007/978-3-319-68032-3_20">Conjectures on representations involving primes</a>, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also <a href="http://arxiv.org/abs/1211.1588">arXiv:1211.1588 [math.NT]</a>, 2012-2017.) %e A304031 a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 = 2^1 + 5^0 prime. %e A304031 a(7) = 2 since 2*7 = 7 + 2^1 + 5^1 with 7 = 2^1 + 5^1 prime, and 2*7 = 11 + 2^1 + 5^0 with 11 and 2^1 + 5^0 both prime. %e A304031 a(42908) = 2 since 2*42908 = 85751 + 2^6 + 5^0 with 85751 prime and 2^6 + 5^0 = 5*13, and 2*42908 = 69431 + 2^14 + 5^0 with 69431 prime and 2^14 + 5^0 = 5*29*113. %t A304031 qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=3; %t A304031 tab={};Do[r=0;Do[If[qq[2^k+5^m]&&PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab] %Y A304031 Cf. A000040, A000079, A000351, A005117, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303949, A304032, A304081. %K A304031 nonn %O A304031 1,4 %A A304031 _Zhi-Wei Sun_, May 04 2018