A304081 Number of ways to write n as p + 2^k + (1+(n mod 2))*5^m, where p is an odd prime, and k and m are nonnegative integers with 2^k + (1+(n mod 2))*5^m squarefree.
0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 1, 2, 2, 2, 1, 3, 3, 3, 2, 4, 2, 3, 2, 5, 2, 4, 2, 3, 3, 3, 2, 4, 3, 5, 1, 7, 4, 4, 3, 7, 2, 4, 3, 8, 4, 7, 4, 6, 3, 7, 3, 6, 4, 5, 3, 5, 4, 5, 2, 7, 3, 5, 4, 8, 4, 5, 3, 5, 5, 8, 6, 6, 6, 9, 3, 9, 7, 6, 6, 8, 5, 6, 4, 6, 8, 7, 6, 8, 7, 4
Offset: 1
Keywords
Examples
a(6) = 1 since 6 = 3 + 2^1 + 5^0 with 3 an odd prime and 2^1 + 5^0 = 3 squarefree. a(15) = 1 since 15 = 5 + 2^3 + 2*5^0 with 5 an odd prime and 2^3 + 2*5^0 = 2*5 squarefree. a(35) = 1 since 35 = 29 + 2^2 + 2*5^0 with 29 an odd prime and 2^2 + 2*5^0 = 2*3 squarefree. a(91) = 1 since 91 = 17 + 2^6 + 2*5^1 with 17 an odd prime and 2^6 + 2*5^1 = 2*37 squarefree. a(9574899) = 1 since 9574899 = 9050609 + 2^19 + 2*5^0 with 9050609 an odd prime and 2^19 + 2*5^0 = 2*5*13*37*109 squarefree. a(6447154629) = 2 since 6447154629 = 6447121859 + 2^15 + 2*5^0 with 6447121859 prime and 2^15 + 2*5^0 = 2*5*29*113 squarefree, and 6447154629 = 5958840611 + 2^15 + 2*5^12 with 5958840611 prime and 2^15 + 2*5^12 = 2*17*41*433*809 squarefree.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Cf. A000040, A000079, A000351, A005117, A098983, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303949, A304031, A304032, A304034, A304122.
Programs
-
Mathematica
PQ[n_]:=n>2&&PrimeQ[n]; tab={};Do[r=0;Do[If[SquareFreeQ[2^k+(1+Mod[n,2])*5^m]&&PQ[n-2^k-(1+Mod[n,2])*5^m],r=r+1],{k,0,Log[2,n]},{m,0,If[2^k==n,-1,Log[5,(n-2^k)/(1+Mod[n,2])]]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments