This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304118 #15 May 26 2018 17:38:06 %S A304118 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1, %T A304118 1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,2,1,1, %U A304118 1,2,1,3,1,1,1,1,1,2,1,1,1,1,1,7,1,1,1,1 %N A304118 Number of z-blobs with least common multiple n > 1. %C A304118 Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1. %C A304118 If n is squarefree with k prime factors, then a(n) = A275307(k). %H A304118 Gus Wiseman, <a href="http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/">Every Clutter Is a Tree of Blobs</a>, The Mathematica Journal, Vol. 19, 2017. %e A304118 The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following. %e A304118 (60): {{1,1,2,3}} %e A304118 (12,30): {{1,1,2},{1,2,3}} %e A304118 (20,30): {{1,1,3},{1,2,3}} %e A304118 (6,15,20): {{1,2},{2,3},{1,1,3}} %e A304118 (10,12,15): {{1,3},{1,1,2},{2,3}} %e A304118 (12,15,20): {{1,1,2},{2,3},{1,1,3}} %e A304118 (12,20,30): {{1,1,2},{1,1,3},{1,2,3}} %e A304118 The a(120) = 14 z-blobs together with the corresponding multiset systems are the following. %e A304118 (120): {{1,1,1,2,3}} %e A304118 (24,30): {{1,1,1,2},{1,2,3}} %e A304118 (24,60): {{1,1,1,2},{1,1,2,3}} %e A304118 (30,40): {{1,2,3},{1,1,1,3}} %e A304118 (40,60): {{1,1,1,3},{1,1,2,3}} %e A304118 (6,15,40): {{1,2},{2,3},{1,1,1,3}} %e A304118 (10,15,24): {{1,3},{2,3},{1,1,1,2}} %e A304118 (12,15,40): {{1,1,2},{2,3},{1,1,1,3}} %e A304118 (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}} %e A304118 (15,20,24): {{2,3},{1,1,3},{1,1,1,2}} %e A304118 (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}} %e A304118 (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}} %e A304118 (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}} %e A304118 (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}} %t A304118 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A304118 zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; %t A304118 zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1]; %t A304118 zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]]; %t A304118 zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]]; %t A304118 zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}]; %t A304118 zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&]; %t A304118 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A304118 Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}] %Y A304118 Cf. A006126, A030019, A048143, A076078, A112798, A134954, A275307, A285572, A286518, A286520, A293993, A293994, A302242, A303837, A303838. %K A304118 nonn %O A304118 1,30 %A A304118 _Gus Wiseman_, May 19 2018