This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304119 #24 May 07 2018 09:37:50 %S A304119 1,27,1701,6561,1760826122505,115093142840908791,460166680231540515, %T A304119 1840049047529878113 %N A304119 Numerators of record low values of the ratio n*3^A006667(n)/2^A006666(n). %C A304119 This has been verified for n up to 10^7. %C A304119 Conjecture: Consider A006666 and A006667, the sequences giving the number of halving and tripling steps to reach 1 in 3x+1 problem. There exists a rational constant c such that c <= n*3^A006667(n)/2^A006666(n) <= 1 where c = 1840049047529878113/2305843009213693952 is the last term in the sequence of the ratios. %C A304119 Note that n*3^A006667(n)/2^A006666(n) = 1 if n is a power of 2 (A000079). %C A304119 It seems that n*3^A006667(n)/2^A006666(n) = c for n = 993*2^k, k = 0, 1, 2, ... In this case, c = 993*2^k*3^32/2^(61+k), where 32 = A006667(993*2^k) and 61+k = A006666(993*2^k). For example, c = 993*3^32/2^61 = 1986*3^32/2^62 = 3972*3^32/2^63 = 7944*3^32/2^64 = ... %e A304119 For n=1 to 10 the ratios are: 1, 1, 27/32, 1, 15/16, 27/32, 1701/2048, 1, 6561/8192, 15/16, so the low records are 1, 27/32, 1701/2048, 6561/8192, ... %t A304119 q=1; Collatz[n_]:=NestWhileList[If[EvenQ[#], #/2, 3 #+1]&, n, #>1&]; nn=5000; t={}; n=0; While[Length[t]<nn, n++; c=Collatz[n]; ev=Length[Select[c, EvenQ]]; od=Length[c]-ev-1; If[n*3^od/2^ev<q, Print[n, " ", od, " ", ev, " ", n*3^od/2^ev]; q=n*3^od/2^ev]] %o A304119 (PARI) ht(n) = my(h, t); while(n>1, if(n%2, n=3*n+1; t++, n>>=1; h++)); return([h, t]); %o A304119 lista(nn) = {m = 2; for (n=1, nn, v = ht(n); newm = n*3^v[2]/2^v[1]; if (newm < m, print1(numerator(newm), ", "); m = newm));} \\ _Michel Marcus_, May 06 2018 %Y A304119 Cf. A006666, A006667, A127789 (for the indices where these records occur). %K A304119 nonn,frac,more %O A304119 1,2 %A A304119 _Michel Lagneau_, May 03 2018