A304157 a(n) is the first Zagreb index of the linear phenylene G[n], defined pictorially in the Darafsheh reference.
24, 68, 112, 156, 200, 244, 288, 332, 376, 420, 464, 508, 552, 596, 640, 684, 728, 772, 816, 860, 904, 948, 992, 1036, 1080, 1124, 1168, 1212, 1256, 1300, 1344, 1388, 1432, 1476, 1520, 1564, 1608, 1652, 1696, 1740, 1784, 1828, 1872, 1916, 1960, 2004, 2048
Offset: 1
Examples
From _Andrew Howroyd_, May 09 2018: (Start) Illustration of the first two graphs: o o o / \ / \ / \ o o o o---o o | | | | | | o o o o---o o \ / \ / \ / o o o In general, the graph consists of a chain of n linked hexagons. . Case n=1: There are 6 vertices of degree 2, so a(1) = 6*2^2 = 24. Case n=2: There are 8 vertices of degree 2 and 4 of degree 3, so a(2) = 8*2^2 + 4*3^3 = 32 + 36 = 68. In general, there will be 2n + 4 vertices of degree 2 and 4n - 4 of degree 3. (End)
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- O. Bodroza-Pantic, I. Gutman, and S. J. Cyvin, Fibonacci numbers and algebraic structure count of some non-benzenoid conjugated polymers, The Fibonacci Quarterly, 35, 1, 1997, 75-83.
- M. R. Darafsheh, Computation of topological indices of some graphs, Acta Appl. Math., 110, 2010, 1225-1235.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- P. Gayathri and U. Priyanka, Degree based topological indices of linear phenylene, Internat. J. of Innovative Research in Science, Engineering and Technology,6, 8, 2017, 16986-16997.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Maple
seq(44*n - 20, n = 1 .. 40);
-
PARI
Vec(4*x*(6 + 5*x) / (1 - x)^2 + O(x^60)) \\ Colin Barker, May 07 2018
Formula
a(n) = 44*n - 20.
a(n) = 4 * A017461(n-1).
From Colin Barker, May 07 2018: (Start)
G.f.: 4*x*(6 + 5*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
Comments