cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304169 a(n) = 16*3^n + 2^(n+1) - 26 (n>=1).

Original entry on oeis.org

26, 126, 422, 1302, 3926, 11766, 35222, 105462, 315926, 946806, 2838422, 8511222, 25525526, 76560246, 229648022, 688878582, 2066504726, 6199252086, 18597232022, 55790647542, 167369845526, 502105342326, 1506307638422, 4518906138102, 13556684859926, 40669987470966
Offset: 1

Views

Author

Emeric Deutsch, May 11 2018

Keywords

Comments

For n>=2, a(n) is the first Zagreb index of the Sierpinski Gasket Rhombus graph SR[n] (see the Antony Xavier et al. reference).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the Sierpinski Gasket Rhombus graph SR[n] is M(SR[n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 +2*x^3*y^6 + (2*3^n - 3*2^n - 4)*x^4*y^4 + (2^{n+1} - 4)*x^4*y^6 + (2^{n-1} - 2)*x^6*y^6.

Crossrefs

Cf. A304170.

Programs

  • Maple
    seq(16*3^n+2^(n+1)-26, n = 1 .. 30);
  • PARI
    Vec(2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 11 2018

Formula

From Colin Barker, May 11 2018: (Start)
G.f.: 2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
(End)