A304169 a(n) = 16*3^n + 2^(n+1) - 26 (n>=1).
26, 126, 422, 1302, 3926, 11766, 35222, 105462, 315926, 946806, 2838422, 8511222, 25525526, 76560246, 229648022, 688878582, 2066504726, 6199252086, 18597232022, 55790647542, 167369845526, 502105342326, 1506307638422, 4518906138102, 13556684859926, 40669987470966
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- D. Antony Xavier, M. Rosary, and Andrew Arokiaraj, Topological properties of Sierpinski Gasket Rhombus graphs, International J. of Mathematics and Soft Computing, 4, No. 2, 2014, 95-104.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A304170.
Programs
-
Maple
seq(16*3^n+2^(n+1)-26, n = 1 .. 30);
-
PARI
Vec(2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 11 2018
Formula
From Colin Barker, May 11 2018: (Start)
G.f.: 2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
(End)
Comments