cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304177 Union of sequences b and c defined by: b(1)=8, b(2)=488, b(n)=62*b(n-1) - b(n-2) and c(1)=22, c(2)=10582, c(n)=482*c(n-1) - c(n-2).

This page as a plain text file.
%I A304177 #42 May 05 2022 15:02:07
%S A304177 8,22,488,10582,30248,1874888,5100502,116212808,2458431382,7203319208,
%T A304177 446489578088,1184958825622,27675150522248,571147695518422,
%U A304177 1715412842801288,106327921103157608,275292004281053782,6590615695552970408,132690174915772404502,408511845203181007688
%N A304177 Union of sequences b and c defined by: b(1)=8, b(2)=488, b(n)=62*b(n-1) - b(n-2) and c(1)=22, c(2)=10582, c(n)=482*c(n-1) - c(n-2).
%C A304177 Conjecture: Each member of this sequence can be used as an initial value for Inkeri's primality test for Fermat numbers.
%C A304177 Inkeri's primality test for Fermat numbers: Fermat's number F_{m}=2^2^m+1 (m => 2) is prime if and only if F_{m} divides the term v_{2^m-2} of the series v_{0}=8 , v_{i}=(v_{i-1})^2-2 .
%D A304177 K. Inkeri, Tests for primality, Ann. Acad. Sci. Fenn., A I 279, 119 (1960).
%H A304177 Pedja Terzic, <a href="https://math.stackexchange.com/questions/2763059/initial-values-of-inkeris-primality-test-for-fermat-numbers">Initial values of Inkeri's primality test for Fermat numbers</a>, Math StackExchange, May 2018.
%t A304177 b=RecurrenceTable[{a[1]==8,a[2]==488,a[n]==62a[n-1]-a[n-2]},a,{n,12}]; c= RecurrenceTable[{a[1]==22,a[2]==10582,a[n]==482a[n-1]-a[n-2]},a,{n,12}]; Join[ b,c]//Union (* _Harvey P. Dale_, May 05 2022 *)
%o A304177 (PARI) InitialValues(n)= {l=[8,22,488,10582];b1=8;b2=488;i=3;while(i<=n,b=62*b2-b1;l=concat(l,b);b1=b2;b2=b;i++);c1=22;c2=10582;j=3;while(j<=n,c=482*c2-c1;l=concat(l,c);c1=c2;c2=c;j++);print(vecsort(l))}
%Y A304177 Cf. A018844, A000215.
%K A304177 easy,nonn
%O A304177 1,1
%A A304177 _Pedja Terzic_, May 07 2018