This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304212 #21 Sep 09 2021 15:45:04 %S A304212 1,1,5,318,112540,139620591,491579082022,4303961368154069, %T A304212 85434752794871493882,3588523098005804563697043, %U A304212 302194941264401427042462944147,48844693123353655726678707534158535,14615188708581196626576773497618986350642 %N A304212 Number of partitions of n^3 into exactly n^2 parts. %H A304212 Chai Wah Wu, <a href="/A304212/b304212.txt">Table of n, a(n) for n = 0..50</a> (terms n = 0..30 from Seiichi Manyama) %F A304212 a(n) = [x^(n^3-n^2)] Product_{k=1..n^2} 1/(1-x^k). %e A304212 n | Partitions of n^3 into exactly n^2 parts %e A304212 --+------------------------------------------------- %e A304212 1 | 1. %e A304212 2 | 5+1+1+1 = 4+2+1+1 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. %p A304212 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A304212 b(n, i-1)+b(n-i, min(i, n-i))) %p A304212 end: %p A304212 a:= n-> b(n^3-n^2, n^2): %p A304212 seq(a(n), n=0..15); # _Alois P. Heinz_, May 08 2018 %t A304212 $RecursionLimit = 2000; %t A304212 b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1]+b[n-i, Min[i, n-i]]]; %t A304212 a[n_] := b[n^3 - n^2, n^2]; a /@ Range[0, 15] (* _Jean-François Alcover_, Nov 15 2020, after _Alois P. Heinz_ *) %o A304212 (PARI) {a(n) = polcoeff(prod(k=1, n^2, 1/(1-x^k+x*O(x^(n^3-n^2)))), n^3-n^2)} %o A304212 (Python) %o A304212 import sys %o A304212 from functools import lru_cache %o A304212 sys.setrecursionlimit(10**6) %o A304212 @lru_cache(maxsize=None) %o A304212 def b(n,i): return 1 if n == 0 or i == 1 else b(n,i-1)+b(n-i,min(i,n-i)) %o A304212 def A304212(n): return b(n**3-n**2,n**2) # _Chai Wah Wu_, Sep 09 2021, after _Alois P. Heinz_ %Y A304212 Cf. A128854, A304176. %K A304212 nonn %O A304212 0,3 %A A304212 _Seiichi Manyama_, May 08 2018