This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304213 #25 Sep 05 2018 02:29:07 %S A304213 1,2,4,-2,8,-8,1,16,-24,8,32,-64,36,-4,64,-160,128,-32,1,128,-384,400, %T A304213 -160,18,256,-896,1152,-640,136,-6,512,-2048,3136,-2240,720,-80,1, %U A304213 1024,-4608,8192,-7168,3120,-592,32,2048,-10240,20736,-21504,11872,-3264,360,-8,4096,-22528,51200,-61440,41216,-15008,2624,-160,1 %N A304213 Triangle read by rows: T(0,0) = 1; T(n,k) = 2*T(n-1,k) - 2*T(n-2,k-1) + T(n-3,k-2) for k = 0..floor(2*n/3); T(n,k)=0 for n or k < 0. %C A304213 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A304209. %C A304213 The coefficients in the expansion of 1/(1-2*x+2*x^2-x^3) are given by the sequence generated by the row sums. %D A304213 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 204, 205. %H A304213 Shara Lalo, <a href="/A304213/a304213.pdf">Left-justified triangle</a> %e A304213 Triangle begins: %e A304213 1; %e A304213 2; %e A304213 4, -2; %e A304213 8, -8, 1; %e A304213 16, -24, 8; %e A304213 32, -64, 36, -4; %e A304213 64, -160, 128, -32, 1; %e A304213 128, -384, 400, -160, 18; %e A304213 256, -896, 1152, -640, 136, -6; %e A304213 512, -2048, 3136, -2240, 720, -80, 1; %e A304213 1024, -4608, 8192, -7168, 3120, -592, 32; %e A304213 2048, -10240, 20736, -21504, 11872, -3264, 360, -8; %e A304213 4096, -22528, 51200, -61440, 41216, -15008, 2624, -160, 1; %e A304213 8192, -49152, 123904, -168960, 133632, -60928, 14896, -1632, 50; %e A304213 16384, -106496, 294912, -450560, 410880, -225792, 71680, -11776, 780, -10; %e A304213 ... %o A304213 (PARI) T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 2*T(n-1,k)-2*T(n-2,k-1)+T(n-3,k-2))); %o A304213 tabf(nn) = for (n=0, nn, for (k=0, 2*n\3, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018 %Y A304213 Row sums is similar to A021823. %Y A304213 Cf. A304209. %K A304213 tabf,easy,sign %O A304213 0,2 %A A304213 _Shara Lalo_, May 08 2018