cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304223 Triangle read by rows: T(0,0)=1; T(n,k) = T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2) for k = 0..floor(2*n/3); T(n,k)=0 for n or k < 0.

This page as a plain text file.
%I A304223 #25 Sep 05 2018 02:29:11
%S A304223 1,1,1,-2,1,-4,2,1,-6,8,1,-8,18,-8,1,-10,32,-32,4,1,-12,50,-80,36,1,
%T A304223 -14,72,-160,136,-24,1,-16,98,-280,360,-160,8,1,-18,128,-448,780,-592,
%U A304223 128,1,-20,162,-672,1484,-1632,720,-64
%N A304223 Triangle read by rows: T(0,0)=1; T(n,k) = T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2) for k = 0..floor(2*n/3); T(n,k)=0 for n or k < 0.
%C A304223 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A304209.
%C A304223 The coefficients in the expansion of 1/(1-x+2*x^2-2*x^3) are given by the sequence generated by the row sums.
%D A304223 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 204, 205.
%H A304223 Shara Lalo, <a href="/A304223/a304223.pdf">Left-justified Triangle</a>
%e A304223 Triangle begins:
%e A304223   1;
%e A304223   1;
%e A304223   1,  -2;
%e A304223   1,  -4,   2;
%e A304223   1,  -6,   8;
%e A304223   1,  -8,  18,   -8;
%e A304223   1, -10,  32,  -32,    4;
%e A304223   1, -12,  50,  -80,   36;
%e A304223   1, -14,  72, -160,  136,   -24;
%e A304223   1, -16,  98, -280,  360,  -160,    8;
%e A304223   1, -18, 128, -448,  780,  -592,  128;
%e A304223   1, -20, 162, -672, 1484, -1632,  720,  -64;
%e A304223   1, -22, 200, -960, 2576, -3752, 2624, -640,  16;
%e A304223   ...
%o A304223 (PARI) T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2)));
%o A304223 tabf(nn) = for (n=0, nn, for (k=0, 2*n\3, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018
%Y A304223 Row sums is A077953.
%Y A304223 Cf. A304209.
%K A304223 tabf,easy,sign
%O A304223 0,4
%A A304223 _Shara Lalo_, May 08 2018