cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304233 If n = Product (p_j^k_j) then a(n) = min{p_j^k_j}*max{p_j^k_j}.

This page as a plain text file.
%I A304233 #7 Feb 16 2025 08:33:54
%S A304233 1,4,9,16,25,6,49,64,81,10,121,12,169,14,15,256,289,18,361,20,21,22,
%T A304233 529,24,625,26,729,28,841,10,961,1024,33,34,35,36,1369,38,39,40,1681,
%U A304233 14,1849,44,45,46,2209,48,2401,50,51,52,2809,54,55,56,57,58,3481,15,3721,62,63,4096,65
%N A304233 If n = Product (p_j^k_j) then a(n) = min{p_j^k_j}*max{p_j^k_j}.
%H A304233 Ilya Gutkovskiy, <a href="/A304233/a304233.jpg">Logarithmic scatter plot of a(n) up to n=30000</a>
%H A304233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization</a>
%F A304233 a(n) = A034684(n)*A034699(n).
%F A304233 a(p^k) = p^(2*k) where p is a prime.
%F A304233 a(A002110(k)) = A100484(k).
%e A304233 a(60) = 15 because 60 = 2^2*3*5, min{2^2,3,5} = 3, max{2^2,3,5} = 5 and 3*5 = 15.
%t A304233 a[n_] := Min[#[[1]]^#[[2]] & /@FactorInteger[n]] Max[#[[1]]^#[[2]] & /@FactorInteger[n]]; Table[a[n], {n, 65}]
%Y A304233 Cf. A000977 (numbers n such that a(n) < n), A002110, A007774 (fixed points), A034684, A034699, A066048, A100484, A141809.
%K A304233 nonn
%O A304233 1,2
%A A304233 _Ilya Gutkovskiy_, May 08 2018