A304234 Superior highly composite numbers that are superabundant but not colossally abundant.
13967553600, 2248776129600, 65214507758400, 195643523275200, 12129898443062400, 448806242393308800, 18401055938125660800, 185942670254759802384000, 9854961523502269526352000, 1162885459773267804109536000, 780296143507862696557498656000
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..39
- Michael De Vlieger, Superior highly composite numbers m that are also superabundant but not colossally abundant
- Michael De Vlieger, Color coded plot of m A002182 and A004394 at (x,y) where A301414(x) * A002110(y) = m, terms in this sequence are colored dark blue.
- Michael De Vlieger, Annotated plot of a(n) for 1 <= n <= 39 at (x,y) = (a(n)/A002110(A001221(a(n)), A002110(A001221(a(n)))
Programs
-
Mathematica
(* First, download b-files at A002201, A004394, and A004490 *) f[w_] := Times @@ Flatten@ {Complement[#1, Union[#2, #3]], Product[Prime@ i, {i, PrimePi@ #}] & /@ #2, Factorial /@ #3} & @@ ToExpression@ {StringSplit[w, _?(! DigitQ@ # &)], StringCases[w, (x : DigitCharacter ..) ~~ "#" :> x], StringCases[w, (x : DigitCharacter ..) ~~ "!" :> x]}; With[{s = Import["b002201.txt", "Data"][[All, -1]], t = Select[Map[Which[StringTake[#, 1] == {"#"}, f@ Last@ StringSplit@ Last@ #, StringTake[#, 1] == {}, Nothing, True, ToExpression@ StringSplit[#][[1, -1]]] &, Drop[Import["b004394.txt", "Data"], 3] ], IntegerQ@ First@ # &][[All, -1]], u = Import["b004490.txt", "Data"][[All, -1]]}, Select[Intersection[s, t], FreeQ[u, #] &]]
Comments