This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304242 #15 Oct 30 2018 15:52:45 %S A304242 1,-4,-6,-8,-9,-12,-15,-16,-25,-29,35,-43,51,-72,73,-88,96,-113,-132, %T A304242 -134,-154,240,-258,-278,-368,432,550,-683,-847,1060,-1078,1240,-1447, %U A304242 -2573,2845,-3448,-4610,-6226,6695,-8565,9132,10246,-15335,-17334,21777,-25071 %N A304242 Increasingly larger (in absolute value) extrema of the Mertens function A002321 between subsequent zeros. %C A304242 Values of A002321 at the indices listed in A304241. %C A304242 These are those records of the absolute value of A002321 which are the maxima or minima between subsequent zeros. Figuratively speaking, these are the increasingly larger heights of the mountains or depths of the valleys of the graph of A002321. %H A304242 Bert Dobbelaere, <a href="/A304242/b304242.txt">Table of n, a(n) for n = 1..65</a> %H A304242 Bert Dobbelaere, <a href="/A304241/a304241.cpp.txt">C++ program for A304241 and A304242</a> %H A304242 G. Hurst, <a href="https://arxiv.org/abs/1610.08551">Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture</a>, arXiv:1610.08551 [math.NT], 2016-2017. %F A304242 a(n) = A002321(A304241(n)). %o A304242 (PARI) L=M=0; for(n=1,oo, if(m=merten(n), abs(m)>abs(M) && [M,N]=[m,n], abs(M)>abs(L) && (L=M) && print1(L","); M=0)) %o A304242 (PARI) print1(j=1);for(i=1,#A051402-1,while( A028442[j] < A051402[i], j++); if( A028442[j-(j>1)]<=A051402[i] && A028442[j] < A051402[i+1], print1(","A002321(A051402[i])))) \\ Using precomputed vectors A002321 and A051402, e.g. from the b-files: {c=0;AX=apply(t->fromdigits(digits(t)[#Str(c++)+1..-1]),readvec("/tmp/bX.txt"))} %Y A304242 Cf. A002321, A028442 (zeros of M), A051400, A051401, A051402 (where M, -M, |M| reaches k = 1, 2, 3, ...). %Y A304242 Cf. A304241, A304239, A304240. %K A304242 sign,hard %O A304242 1,2 %A A304242 _M. F. Hasler_, May 08 2018 %E A304242 More terms from _Bert Dobbelaere_, Oct 30 2018