A304245 Numbers that yield a prime when '2' is inserted between the first and second digit, or prime(k+1) is inserted after the k-th digit for any k > 1, k < number of digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 23, 27, 29, 41, 51, 53, 77, 81, 83, 87, 89, 99, 101, 113, 129, 149, 159, 179, 191, 203, 213, 221, 237, 251, 267, 269, 273, 281, 287, 293, 297, 321, 329, 357, 359, 401, 417, 419, 429, 441, 461, 471, 497, 509, 531, 561, 581, 603, 611, 663, 669, 687, 699, 707, 711
Offset: 1
Examples
The 1-digit numbers 0..9 are included since the condition is voidly satisfied: nothing can be inserted, therefore each of the resulting numbers is prime. 17 is in the sequence because 127 is prime. 101 is in the sequence because 1201 and 1051 are prime.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..348 (all terms < 10^7).
Crossrefs
Cf. A304243 (2 is prefixed or prime(k+2) is inserted after the k-th digit), A304244 (prime(k) is inserted after the k-th digit) .
Cf. A068679 (1 is prefixed, appended or inserted anywhere), A069246 (primes among these), A068673 (1 is prefixed, or appended).
Cf. A069832 (7 is prefixed, appended or inserted anywhere), A215420 (primes among these), A068677 (7 is prefixed or appended).
Cf. A158232 (13 is prefixed or appended).
Programs
-
PARI
is(n,L=logint(n+!n,10)+1,d,p,P)={!for(k=1,L-1, isprime((d=divrem(n,P=10^(L-k)))[2]+(10^logint(10*p=prime(k+(k>1)),10)*d[1]+p)*P)|| return)}
Comments