This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304249 #35 Sep 08 2022 08:46:21 %S A304249 1,3,9,1,27,6,81,27,1,243,108,9,729,405,54,1,2187,1458,270,12,6561, %T A304249 5103,1215,90,1,19683,17496,5103,540,15,59049,59049,20412,2835,135,1, %U A304249 177147,196830,78732,13608,945,18,531441,649539,295245,61236,5670,189,1 %N A304249 Triangle T(n,k) = 3*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1 and T(n,k) = 0 for n < 0 or k < 0, read by rows. %C A304249 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n), cf. formula. %C A304249 The coefficients in the expansion of 1/(1-3x-x^2) are given by the sequence generated by the row sums. %C A304249 The sequence of the row sums are the "Bronze Fibonacci numbers" A006190, and the limit of their ratio is 3.30277563773... (Bronze ratio), see A098316. %D A304249 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 86, 363. %H A304249 Zagros Lalo, <a href="/A304249/a304249.pdf">Left justified triangle</a> %H A304249 Zagros Lalo, <a href="/A304249/a304249_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1+3x)^n</a> %F A304249 T(n,k) = A013610(n-k, n-2k). - _M. F. Hasler_, Jun 01 2018 %e A304249 Triangle begins: %e A304249 1; %e A304249 3; %e A304249 9, 1; %e A304249 27, 6; %e A304249 81, 27, 1; %e A304249 243, 108, 9; %e A304249 729, 405, 54, 1; %e A304249 2187, 1458, 270, 12; %e A304249 6561, 5103, 1215, 90, 1; %e A304249 19683, 17496, 5103, 540, 15; %e A304249 59049, 59049, 20412, 2835, 135, 1; %e A304249 177147, 196830, 78732, 13608, 945, 18; %e A304249 531441, 649539, 295245, 61236, 5670, 189, 1; %e A304249 1594323, 2125764, 1082565, 262440, 30618, 1512, 21; %e A304249 4782969, 6908733, 3897234, 1082565, 153090, 10206, 252, 1; %e A304249 14348907, 22320522, 13817466, 4330260, 721710, 61236, 2268, 24; %e A304249 43046721, 71744535, 48361131, 16888014, 3247695, 336798, 17010, 324, 1; %e A304249 129140163, 229582512, 167403915, 64481508, 14073345, 1732104, 112266, 3240, 27; %t A304249 T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, 3T[n-1, k] + T[n-2, k-1]]; %t A304249 Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}]//Flatten %t A304249 With[{q=2}, Table[3^(n-q*k)*Binomial[n-(q-1)*k, k], {n,0,24}, {k,0,Floor[n/q]}] ]//Flatten (* _G. C. Greubel_, May 12 2021 *) %o A304249 (PARI) T(n,k)=if( n>0 && k>0, 3*T(n-1, k) + T(n-2, k-1), !n && !k) %o A304249 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018 %o A304249 (Magma) [3^(n-2*k)*Binomial(n-k,k): k in [0..Floor(n/2)], n in [0..24]]; // _G. C. Greubel_, May 12 2021 %o A304249 (Sage) flatten([[3^(n-2*k)*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # _G. C. Greubel_, May 12 2021 %Y A304249 Row sums give A006190. %Y A304249 Cf. A013610, A098316. %Y A304249 Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), this sequence (q=2), A317497 (q=3), A318773 (q=4). %K A304249 tabf,nonn,easy %O A304249 0,2 %A A304249 _Zagros Lalo_, May 08 2018