This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304252 #34 Aug 08 2025 06:41:29 %S A304252 1,1,1,6,1,12,1,18,36,1,24,108,1,30,216,216,1,36,360,864,1,42,540, %T A304252 2160,1296,1,48,756,4320,6480,1,54,1008,7560,19440,7776,1,60,1296, %U A304252 12096,45360,46656,1,66,1620,18144,90720,163296,46656,1,72,1980,25920,163296,435456,326592,1,78,2376,35640 %N A304252 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 6*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A304252 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013613 ((1+6*x)^n). %C A304252 The coefficients in the expansion of 1/(1-x-6*x^2) are given by the sequence generated by the row sums. %D A304252 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72. %H A304252 Zagros Lalo, <a href="/A304252/a304252.pdf">Left-justified triangle</a> %H A304252 Zagros Lalo, <a href="/A304252/a304252_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1+6x)^n</a> %F A304252 T(n,k) = 6^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2). %e A304252 Triangle begins: %e A304252 1; %e A304252 1; %e A304252 1, 6; %e A304252 1, 12; %e A304252 1, 18, 36; %e A304252 1, 24, 108; %e A304252 1, 30, 216, 216; %e A304252 1, 36, 360, 864; %e A304252 1, 42, 540, 2160, 1296; %e A304252 1, 48, 756, 4320, 6480; %e A304252 1, 54, 1008, 7560, 19440, 7776; %e A304252 1, 60, 1296, 12096, 45360, 46656; %e A304252 1, 66, 1620, 18144, 90720, 163296, 46656; %e A304252 1, 72, 1980, 25920, 163296, 435456, 326592; %e A304252 1, 78, 2376, 35640, 272160, 979776, 1306368, 279936; %e A304252 1, 84, 2808, 47520, 427680, 1959552, 3919104, 2239488; %t A304252 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 6 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* _Robert G. Wilson v_, May 19 2018 *) %t A304252 Table[6^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten %o A304252 (PARI) T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k) + 6*T(n-2,k-1))); %o A304252 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018 %Y A304252 Row sums give A015441. %Y A304252 Cf. A013613. %K A304252 tabf,nonn,easy %O A304252 0,4 %A A304252 _Zagros Lalo_, May 09 2018