cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A304264 Number of n X n 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 6, 21, 146, 1246, 13767, 252509, 5755625, 177353720, 8354131403, 523250794396, 44173651472383, 5428616779817049, 920678621074132173, 212277158481925445968, 69198443091508695982216
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Diagonal of A304270.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1
..0..0..0..0..0. .0..0..0..0..0. .1..0..0..0..0. .0..0..0..0..0
..0..0..0..1..0. .0..0..0..0..1. .0..0..0..0..1. .1..0..0..0..0
..0..0..0..0..0. .0..1..0..0..0. .0..0..0..0..0. .0..0..0..1..0
		

Crossrefs

Cf. A304270.

A304265 Number of nX3 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 3, 6, 10, 19, 37, 67, 124, 235, 436, 808, 1513, 2821, 5245, 9784, 18247, 33982, 63334, 118075, 220021, 410023, 764248, 1424311, 2654380, 4947124, 9220057, 17183197, 32024569, 59684740, 111234331, 207308038, 386362258, 720065251, 1341989365
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Column 3 of A304270.

Examples

			Some solutions for n=5
..0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0. .0..1..0. .0..0..0
..1..0..0. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0
..0..0..0. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..1
..0..0..0. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0
		

Crossrefs

Cf. A304270.

Formula

Empirical: a(n) = a(n-1) +3*a(n-3) for n>4

A304266 Number of nX4 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 5, 10, 21, 50, 116, 259, 601, 1397, 3196, 7359, 17016, 39172, 90185, 208017, 479413, 1104402, 2545521, 5866934, 13519272, 31155923, 71803941, 165473389, 381338852, 878829251, 2025313404, 4667430712, 10756397233, 24788787493, 57127147381
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Column 4 of A304270.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..1..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..0
		

Crossrefs

Cf. A304270.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +5*a(n-3) +a(n-4) -3*a(n-5) -3*a(n-6) for n>7

A304267 Number of nX5 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 7, 19, 50, 146, 404, 1074, 2990, 8316, 22660, 62314, 172244, 473150, 1300260, 3582364, 9857308, 27108012, 74607826, 205320218, 564864078, 1554286696, 4277060278, 11768341874, 32381151240, 89101629960, 245170898378
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Column 5 of A304270.

Examples

			Some solutions for n=5
..0..1..0..0..0. .0..0..0..0..0. .0..1..0..0..0. .0..1..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0
..0..0..0..0..0. .1..0..0..1..0. .0..0..0..0..0. .0..0..0..0..1
..0..0..1..0..0. .0..0..0..0..0. .1..0..0..0..0. .0..1..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
		

Crossrefs

Cf. A304270.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +10*a(n-3) +4*a(n-4) -2*a(n-5) -12*a(n-6) -5*a(n-7) -4*a(n-8) +4*a(n-9) for n>10

A304268 Number of nX6 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

13, 13, 37, 116, 404, 1246, 3788, 12342, 39252, 122156, 388150, 1234248, 3885916, 12284744, 38942904, 123064868, 388956186, 1231020108, 3893434762, 12310010474, 38938978286, 123164661778, 389498928546, 1231896735244, 3896353516054
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Column 6 of A304270.

Examples

			Some solutions for n=5
..0..0..0..0..0..0. .0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..1..0..0..0
..0..1..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1
..0..0..0..0..0..1. .0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0
..0..0..0..0..0..0. .0..0..0..0..0..0. .0..1..0..0..1..0. .0..0..0..0..0..0
..0..1..0..0..0..0. .0..1..0..0..1..0. .0..0..0..0..0..0. .0..0..0..0..1..0
		

Crossrefs

Cf. A304270.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +16*a(n-3) +7*a(n-4) -14*a(n-5) -45*a(n-6) -14*a(n-7) +5*a(n-8) +38*a(n-9) +13*a(n-10) -6*a(n-11) -6*a(n-12) for n>13

A304269 Number of n X 7 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

21, 23, 67, 259, 1074, 3788, 13767, 53839, 201274, 741275, 2806825, 10575217, 39423977, 147990910, 556562343, 2084799226, 7816395336, 29347218029, 110071768648, 412764006652, 1548711236567, 5809916135249, 21791597835454
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Column 7 of A304270.

Examples

			Some solutions for n=5
..0..0..0..0..0..1..0. .0..1..0..0..1..0..0. .0..1..0..0..0..0..0
..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..1..0
..1..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..0..0..0..0..1. .1..0..0..1..0..0..0. .0..1..0..0..0..0..0
..0..0..0..1..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..1..0
		

Crossrefs

Cf. A304270.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +33*a(n-3) +20*a(n-4) -18*a(n-5) -257*a(n-6) -260*a(n-7) -44*a(n-8) +912*a(n-9) +798*a(n-10) +241*a(n-11) -1094*a(n-12) -868*a(n-13) -450*a(n-14) +667*a(n-15) +251*a(n-16) +158*a(n-17) -247*a(n-18) -19*a(n-19) +25*a(n-20) +81*a(n-21) +7*a(n-22) -8*a(n-24) for n>25.
Showing 1-6 of 6 results.