This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304318 #14 Sep 04 2020 11:47:18 %S A304318 1,0,2,24,436,10656,328112,12183456,529242224,26309617536, %T A304318 1472135847072,91526938123008,6258004268952064,466599240364076544, %U A304318 37672137946943244288,3274012281487011586560,304724394621209905647360,30239686358027369113804800,3187164738879981461171955200,355548230503664593634743375872 %N A304318 O.g.f. A(x) satisfies: [x^n] exp( n*(n-1) * x ) / A(x) = 0. %C A304318 It is striking that the coefficients of o.g.f. A(x) consist entirely of integers. %H A304318 Paul D. Hanna, <a href="/A304318/b304318.txt">Table of n, a(n) for n = 0..400</a> %F A304318 a(n) ~ sqrt(1-c) * 2^(2*n - 1) * n^(n - 1/2) / (sqrt(Pi) * c^(n - 1/2) * (2-c)^n * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - _Vaclav Kotesovec_, Aug 31 2020 %e A304318 O.g.f.: A(x) = 1 + 2*x^2 + 24*x^3 + 436*x^4 + 10656*x^5 + 328112*x^6 + 12183456*x^7 + 529242224*x^8 + 26309617536*x^9 + 1472135847072*x^10 + ... %e A304318 ILLUSTRATION OF DEFINITION. %e A304318 The table of coefficients of x^k/k! in exp(n*(n-1)*x) / A(x) begins: %e A304318 n=0: [1, 0, -4, -144, -10368, -1267200, -234576000, -61085767680, ...]; %e A304318 n=1: [1, 0, -4, -144, -10368, -1267200, -234576000, -61085767680, ...]; %e A304318 n=2: [1, 2, 0, -160, -11600, -1376928, -250428416, -64479262720, ...]; %e A304318 n=3: [1, 6, 32, 0, -13392, -1630944, -286447104, -71981250048, ...]; %e A304318 n=4: [1, 12, 140, 1440, 0, -1916928, -351444096, -85338800640, ...]; %e A304318 n=5: [1, 20, 396, 7616, 128512, 0, -417488000, -107269127680, ...]; %e A304318 n=6: [1, 30, 896, 26496, 760752, 19101600, 0, -128348167680, ...]; %e A304318 n=7: [1, 42, 1760, 73440, 3034800, 121743072, 4260708864, 0, ...]; %e A304318 n=8: [1, 56, 3132, 174800, 9716608, 535021056, 28597069696, 1331047703552, 0, ...]; ... %e A304318 in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)*x ) / A(x) = 0 for n>=0. %e A304318 LOGARITHMIC DERIVATIVE. %e A304318 The logarithmic derivative of A(x) yields the o.g.f. of A304316: %e A304318 A'(x)/A(x) = 4*x + 72*x^2 + 1736*x^3 + 53040*x^4 + 1961728*x^5 + 85062432*x^6 + 4225904800*x^7 + 236455369344*x^8 + 14705880874944*x^9 + 1005982098054912*x^10 + ... + A304316(n)*x^n + ... %o A304318 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)*(m-2) +x*O(x^m)) / Ser(A) )[m] ); A[n+1]} %o A304318 for(n=0,25, print1( a(n),", ")) %Y A304318 Cf. A304316, A304319, A304320. %K A304318 nonn %O A304318 0,3 %A A304318 _Paul D. Hanna_, May 11 2018