cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304331 Number of integers k > 1 such that n - F(k) is a positive squarefree number, where F(k) denotes the k-th Fibonacci number A000045(k).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 5, 5, 2, 5, 4, 4, 2, 5, 5, 6, 3, 4, 5, 4, 2, 3, 5, 5, 2, 6, 6, 7, 4, 5, 6, 6, 4, 6, 6, 7, 4, 4, 6, 5, 4, 4, 5, 4, 2, 5, 5, 7, 3, 5, 5, 8, 4, 5, 6, 6, 4, 5, 6, 7, 5, 6, 5, 8, 4, 7, 6, 6, 4, 6, 6, 6, 5, 5, 4, 5, 5, 6, 7, 6, 4, 8
Offset: 1

Views

Author

Zhi-Wei Sun, May 11 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, every n = 2,3,... can be written as the sum of a positive Fibonacci number and a positive squarefree number.
This has been verified for n up to 10^10.
See also A304333 for a similar conjecture involving Lucas numbers.

Examples

			a(2) = 1 with 2 - F(2) = 1 squarefree.
a(53) = 2 with 53 - F(3) = 3*17 and 53 - F(9) = 19 both squarefree.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Fibonacci[n];
    tab={};Do[r=0;k=2;Label[bb];If[f[k]>=n,Goto[aa]];If[SquareFreeQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,90}];Print[tab]