A304331 Number of integers k > 1 such that n - F(k) is a positive squarefree number, where F(k) denotes the k-th Fibonacci number A000045(k).
0, 1, 2, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 5, 5, 2, 5, 4, 4, 2, 5, 5, 6, 3, 4, 5, 4, 2, 3, 5, 5, 2, 6, 6, 7, 4, 5, 6, 6, 4, 6, 6, 7, 4, 4, 6, 5, 4, 4, 5, 4, 2, 5, 5, 7, 3, 5, 5, 8, 4, 5, 6, 6, 4, 5, 6, 7, 5, 6, 5, 8, 4, 7, 6, 6, 4, 6, 6, 6, 5, 5, 4, 5, 5, 6, 7, 6, 4, 8
Offset: 1
Keywords
Examples
a(2) = 1 with 2 - F(2) = 1 squarefree. a(53) = 2 with 53 - F(3) = 3*17 and 53 - F(9) = 19 both squarefree.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Programs
-
Mathematica
f[n_]:=f[n]=Fibonacci[n]; tab={};Do[r=0;k=2;Label[bb];If[f[k]>=n,Goto[aa]];If[SquareFreeQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments