This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304336 #12 May 11 2018 12:04:15 %S A304336 1,0,1,0,1,3,0,1,15,10,0,1,63,140,35,0,1,255,1470,1050,126,0,1,1023, %T A304336 14080,21945,6930,462,0,1,4095,130130,400400,252252,42042,1716,0,1, %U A304336 16383,1184820,6861855,7747740,2438436,240240,6435 %N A304336 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n. %F A304336 T(n, k) = A304330(n, k)/(k!)^2. %F A304336 T(n, k) = A304334(n, k)/k!. %e A304336 Triangle starts: %e A304336 [0] 1; %e A304336 [1] 0, 1; %e A304336 [2] 0, 1, 3; %e A304336 [3] 0, 1, 15, 10; %e A304336 [4] 0, 1, 63, 140, 35; %e A304336 [5] 0, 1, 255, 1470, 1050, 126; %e A304336 [6] 0, 1, 1023, 14080, 21945, 6930, 462; %e A304336 [7] 0, 1, 4095, 130130, 400400, 252252, 42042, 1716; %e A304336 [8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435; %p A304336 A304336 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2: %p A304336 for n from 0 to 8 do seq(A304336(n, k), k=0..n) od; %o A304336 (PARI) T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2; %o A304336 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 11 2018 %Y A304336 Row sums are A304338, T(n,n) = A088218 and A001700, T(n,n-1) ~ A002803, T(n,2) ~ A024036, T(n,3) ~ bisection of A174395. %Y A304336 Cf. A304330, A304334. %K A304336 nonn,tabl %O A304336 0,6 %A A304336 _Peter Luschny_, May 11 2018