This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304364 #19 May 20 2023 04:33:51 %S A304364 2,3,5,6,7,8,10,11,13,14,15,16,17,19,21,22,23,24,26,27,29,30,31,32,33, %T A304364 34,35,37,38,39,40,41,42,43,46,47,48,51,53,54,55,56,57,58,59,61,62,64, %U A304364 65,66,67,69,70,71,73,74,77,78,79,80,81,82,83,85,86,87,88 %N A304364 Numbers k such that A304362(k) = Sum_{d|k, d = 1 or not a perfect power} mu(k/d) = 0. %C A304364 Also numbers k such that mu(k) = -Sum_{d|k, d not a perfect power} mu(k/d). %C A304364 Contains all squarefree numbers (A005117) except 1. %C A304364 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 74, 746, 7443, 74337, 743235, 7432161, 74320977, 743208896, 7432087549, ... . Apparently, the asymptotic density of this sequence exists and equals 0.743208... . - _Amiram Eldar_, May 20 2023 %H A304364 Andrew Howroyd, <a href="/A304364/b304364.txt">Table of n, a(n) for n = 1..1000</a> %t A304364 Select[Range[100],Sum[If[GCD@@FactorInteger[d][[All,2]]===1,MoebiusMu[#/d],0],{d,Divisors[#]}]===0&] %o A304364 (PARI) ok(n)={sumdiv(n, d, if(ispower(d), 0, moebius(n/d))) == 0} \\ _Andrew Howroyd_, Aug 26 2018 %Y A304364 Cf. A000005, A000961, A001221, A001597, A001694, A005117, A007916, A008683, A091050, A304326, A304327, A304362, A304365, A304369. %K A304364 nonn %O A304364 1,1 %A A304364 _Gus Wiseman_, May 11 2018