This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304366 #24 Feb 16 2025 08:33:54 %S A304366 10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,30,31,32,33,34,35, %T A304366 36,40,41,42,43,44,45,50,51,52,53,54,60,61,62,63,70,71,72,80,81,90, %U A304366 100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116 %N A304366 Numbers with additive persistence = 1. %C A304366 For d >= 2, there are A000581(d+8) terms with d digits. - _Robert Israel_, Dec 28 2023 %H A304366 Robert Israel, <a href="/A304366/b304366.txt">Table of n, a(n) for n = 1..10000</a> %H A304366 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AdditivePersistence.html">Additive Persistence.</a> %F A304366 A031286(a(n)) = 1. %e A304366 Adding the digits of 10 gives 1, a single-digit number, so 10 is a member. Adding the digits of 39 gives 12, which is a 2-digit number, so 39 is not a member. - _Michael B. Porter_, May 16 2018 %p A304366 select(t -> convert(convert(t,base,10),`+`) < 10, [$10 .. 200]); # _Robert Israel_, Dec 28 2023 %t A304366 Select[Range@ 120, Length@ FixedPointList[Total@ IntegerDigits@ # &, #] == 3 &] (* _Michael De Vlieger_, May 14 2018 *) %o A304366 (PARI) nb(n) = {my(nba = 0); while (n > 9, n = sumdigits(n); nba++); nba;} %o A304366 isok(n) = nb(n) == 1; \\ _Michel Marcus_, May 13 2018 %Y A304366 Cf. A000581, A031286. %Y A304366 Cf. Numbers with additive persistence k: A304367 (k=2), A304368 (k=3), A304373 (k=4). %K A304366 nonn,base %O A304366 1,1 %A A304366 _Jaroslav Krizek_, May 11 2018