cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304370 Number of function calls of the first kind required to compute ack(3,n), where ack denotes the Ackermann function.

This page as a plain text file.
%I A304370 #12 May 13 2018 08:53:29
%S A304370 9,58,283,1244,5213,21342,86367,347488,1394017,5584226,22353251,
%T A304370 89445732,357848421,1431524710,5726360935,22905967976,91624920425,
%U A304370 366501778794,1466011309419,5864053626220,23456231282029,93824958682478,375299901838703,1501199741572464
%N A304370 Number of function calls of the first kind required to compute ack(3,n), where ack denotes the Ackermann function.
%C A304370 The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C.
%C A304370 int ack(int m, int n)
%C A304370 {
%C A304370 // Final result
%C A304370 ....if (m==0) return n + 1;
%C A304370 .
%C A304370 // Recursive calls of the first kind:
%C A304370 ....if (n==0) return ack(m - 1, 1);
%C A304370 .
%C A304370 // Recursive calls of the second kind:
%C A304370 ....return ack(m - 1, ack(m, n - 1));
%C A304370 }
%H A304370 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,22,-8).
%F A304370 G.f.: (8*x^2-14*x+9)/((4*x-1)*(2*x-1)*(x-1)^2). - _Alois P. Heinz_, May 12 2018
%Y A304370 Cf. A036563, A074877, A304371.
%K A304370 nonn,easy
%O A304370 0,1
%A A304370 _Olivier Gérard_, May 11 2018