This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304371 #13 Oct 22 2019 09:31:48 %S A304371 5,47,257,1187,5093,21095,85865,346475,1391981,5580143,22345073, %T A304371 89429363,357815669,1431459191,5726229881,22905705851,91624396157, %U A304371 366500730239,1466009212289,5864049431939,23456222893445,93824941905287,375299868284297,1501199674463627 %N A304371 Number of function calls of the second kind required to compute ack(3,n), where ack denotes the Ackermann function. %C A304371 The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C. %C A304371 int ack(int m, int n) %C A304371 { %C A304371 // Final result %C A304371 ....if (m==0) return n + 1; %C A304371 . %C A304371 // Recursive calls of the first kind: %C A304371 ....if (n==0) return ack(m - 1, 1); %C A304371 . %C A304371 // Recursive calls of the second kind: %C A304371 ....return ack(m - 1, ack(m, n - 1)); %C A304371 } %H A304371 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,22,-8). %F A304371 A304370(n) + a(n) + 1 = A074877(n). %F A304371 G.f.: (8*x^3-14*x^2+7*x+5)/((4*x-1)*(2*x-1)*(x-1)^2). - _Alois P. Heinz_, May 12 2018 %t A304371 LinearRecurrence[{8,-21,22,-8},{5,47,257,1187},30] (* _Harvey P. Dale_, Oct 22 2019 *) %Y A304371 Cf. A036563, A074877, A304370. %K A304371 nonn,easy %O A304371 0,1 %A A304371 _Olivier Gérard_, May 11 2018