cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304371 Number of function calls of the second kind required to compute ack(3,n), where ack denotes the Ackermann function.

This page as a plain text file.
%I A304371 #13 Oct 22 2019 09:31:48
%S A304371 5,47,257,1187,5093,21095,85865,346475,1391981,5580143,22345073,
%T A304371 89429363,357815669,1431459191,5726229881,22905705851,91624396157,
%U A304371 366500730239,1466009212289,5864049431939,23456222893445,93824941905287,375299868284297,1501199674463627
%N A304371 Number of function calls of the second kind required to compute ack(3,n), where ack denotes the Ackermann function.
%C A304371 The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C.
%C A304371 int ack(int m, int n)
%C A304371 {
%C A304371 // Final result
%C A304371 ....if (m==0) return n + 1;
%C A304371 .
%C A304371 // Recursive calls of the first kind:
%C A304371 ....if (n==0) return ack(m - 1, 1);
%C A304371 .
%C A304371 // Recursive calls of the second kind:
%C A304371 ....return ack(m - 1, ack(m, n - 1));
%C A304371 }
%H A304371 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,22,-8).
%F A304371 A304370(n) + a(n) + 1 = A074877(n).
%F A304371 G.f.: (8*x^3-14*x^2+7*x+5)/((4*x-1)*(2*x-1)*(x-1)^2). - _Alois P. Heinz_, May 12 2018
%t A304371 LinearRecurrence[{8,-21,22,-8},{5,47,257,1187},30] (* _Harvey P. Dale_, Oct 22 2019 *)
%Y A304371 Cf. A036563, A074877, A304370.
%K A304371 nonn,easy
%O A304371 0,1
%A A304371 _Olivier Gérard_, May 11 2018