A304382 Number of z-trees summing to n. Number of connected strict integer partitions of n with pairwise indivisible parts and clutter density -1.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 8, 4, 9, 8, 13, 9, 15, 8, 14, 12, 16, 12, 20, 20, 24, 15, 27, 20, 33, 27, 35
Offset: 1
Examples
The a(30) = 8 z-trees together with the corresponding multiset systems are the following. (30): {{1,2,3}} (26,4): {{1,6},{1,1}} (22,8): {{1,5},{1,1,1}} (21,9): {{2,4},{2,2}} (16,14): {{1,1,1,1},{1,4}} (15,9,6): {{2,3},{2,2},{1,2}} (14,10,6): {{1,4},{1,3},{1,2}} (12,10,8): {{1,1,2},{1,3},{1,1,1}}
Links
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1]; strConnAnti[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]==1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}&]; Table[Length[Select[strConnAnti[n],Length[#]==1||zreeQ[#]&]],{n,20}]
Comments