This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304402 #20 Oct 06 2020 03:38:59 %S A304402 1,1,9,179,5661,249424,14337039,1035838044,91867414241,9833503227827, %T A304402 1253246430314670,187948018130914066,32818034910964227439, %U A304402 6608081830970361618546,1520982783352578794866344,397027611766464517915252056,116698001659938095895315068553,38375694701199964362412343063161 %N A304402 O.g.f. A(x) satisfies: [x^n] exp( n^2 * x*A(x) ) / A(x) = 0 for n > 0. %C A304402 Note: [x^n] exp( n * x*G(x) ) / G(x) = 0 for n>0 when G(x) is the g.f. of A088716. %C A304402 It is remarkable that this sequence should consist entirely of integers. %C A304402 What is the limit A304402(n) / A304400(n) ? Seems to be near 1.51... %C A304402 A304402(n) / A304400(n) tends to 1.522998920075488836991600223419379... - _Vaclav Kotesovec_, Oct 06 2020 %H A304402 Paul D. Hanna, <a href="/A304402/b304402.txt">Table of n, a(n) for n = 0..300</a> %F A304402 a(n) ~ c * n!^2 * n^2, where c = 1.18365083976367345437640389636650727... - _Vaclav Kotesovec_, Oct 06 2020 %e A304402 O.g.f.: A(x) = 1 + x + 9*x^2 + 179*x^3 + 5661*x^4 + 249424*x^5 + 14337039*x^6 + 1035838044*x^7 + 91867414241*x^8 + 9833503227827*x^9 + ... %e A304402 ILLUSTRATION OF DEFINITION. %e A304402 The table of coefficients of x^k/k! in exp( n^2 * x*A(x) ) / A(x) begins: %e A304402 n=0: [1, -1, -16, -972, -125952, -28275000, -9885939840, ...]; %e A304402 n=1: [1, 0, -15, -968, -125835, -28263864, -9883855835, ...]; %e A304402 n=2: [1, 3, 0, -860, -123456, -28073976, -9850185728, ...]; %e A304402 n=3: [1, 8, 65, 0, -104811, -26970576, -9680119083, ...]; %e A304402 n=4: [1, 15, 240, 3892, 0, -21937464, -9078485120, ...]; %e A304402 n=5: [1, 24, 609, 16528, 457173, 0, -7077136715, ...]; %e A304402 n=6: [1, 35, 1280, 49572, 2066880, 89033736, 0, ...]; %e A304402 n=7: [1, 48, 2385, 123880, 6839349, 411165624, 26124539077, 0, ...]; ... %e A304402 in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2 * x*A(x) ) / A(x) = 0 for n > 0. %e A304402 Terms along the secondary diagonal in the above table are divisible by the odd numbers: [1, 3/3, 65/5, 3892/7, 457173/9, 89033736/11, 26124539077/13, ...] = [1, 1, 13, 556, 50797, 8093976, 2009579929, ...]. %e A304402 RELATED SERIES. %e A304402 exp( x*A(x) ) = 1 + x + 3*x^2/2! + 61*x^3/3! + 4537*x^4/4! + 702501*x^5/5! + 183891571*x^6/6! + 73567995313*x^7/7! + 42361186187601*x^8/8! + ... %e A304402 The arithmetic inverse of the o.g.f. begins: %e A304402 1/A(x) = 1 - x - 8*x^2 - 162*x^3 - 5248*x^4 - 235625*x^5 - 13730472*x^6 - 1001798042*x^7 - 89479215104*x^8 - 9627430506669*x^9 + ... %o A304402 (PARI) {a(n) = my(A=[1],m); for(i=1,n, A=concat(A,0); m=#A; A[m] = Vec( exp( (m-1)^2*x*Ser(A) ) / Ser(A) )[m] );A[n+1]} %o A304402 for(n=0,20, print1(a(n),", ")) %Y A304402 Cf. A304400, A088716. %K A304402 nonn %O A304402 0,3 %A A304402 _Paul D. Hanna_, May 25 2018