This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304410 #12 Jan 31 2025 04:03:09 %S A304410 1,8,9,72,13440,21120,24960,29568,32640,34944,36480,44160,45696,49280, %T A304410 51072,54912,55680,58240,59520,61824,71040,71808,76160,77952,78720, %U A304410 80256,82560,83328,84864,85120,90240,91520,94848,97152,99456,101760,103040,110208,113280,114816,115584,117120,119680 %N A304410 Numbers k such that k = Product (p_j^e_j) = Product (p_j*(e_j + 1)). %C A304410 Numbers k such that A000005(k)*A007947(k) = k. %C A304410 Fixed points of A304409. %C A304410 All terms are refactorable numbers (A033950). %H A304410 Amiram Eldar, <a href="/A304410/b304410.txt">Table of n, a(n) for n = 1..10000</a> %H A304410 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %H A304410 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>. %e A304410 13440 is a term because 13440 = 2^7*3*5*7 = 2*(7 + 1) * 3*(1 + 1) * 5*(1 + 1) * 7*(1 + 1). %t A304410 a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Select[Range[120000], a[#] == # &] %o A304410 (PARI) isok(k) = {my(f = factor(k)); numdiv(f) * vecprod(f[, 1]) == k;} \\ _Amiram Eldar_, Jan 31 2025 %Y A304410 Cf. A000005, A000026, A007947, A008478, A033950, A036762, A048768, A078779, A190473, A304409. %K A304410 nonn %O A304410 1,2 %A A304410 _Ilya Gutkovskiy_, May 12 2018