A304433 Numbers n such that n^3 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).
5, 7, 8, 10, 12, 13, 14, 17, 20, 25, 26, 28, 29, 32, 33, 34, 37, 40, 41, 45, 48, 50, 52, 53, 56, 57, 58, 61, 63, 65, 68, 71, 72, 73, 74, 78, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 105, 106, 109, 112, 113, 114, 116, 117, 122, 125, 126, 128
Offset: 1
Keywords
Examples
5^3 = 125 = 4^2 + 11^2; 7^3 = 10^2 + 3^5; 8^3 = 13^2 + 7^3, ...
Links
- Robert Israel, Table of n, a(n) for n = 1..5970
Crossrefs
Programs
-
Maple
N:= 200: # to get terms <= N N3:= N^3: P:= {seq(seq(x^k, k=3..floor(log[x](N3))), x=2..N)}: filter:= proc(n) local n3, Pp, x, y; n3:= n^3; if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=n3)]) <> [] then return true fi; Pp:= map(t ->n3-t, P minus {n3, n3/2}); (Pp intersect P <> {}) or (select(issqr, Pp) <> {}) end proc: select(filter, [$2..N]); # Robert Israel, Jun 01 2018
-
Mathematica
M = 200; M3 = M^3; P = Union@ Flatten@ Table[Table[x^k, {k, 3, Floor[Log[x, M3]]}], {x, 2, M}]; filterQ[n_] := Module[{n3, Pp, x, y}, n3 = n^3; If[Solve[x > 1 && y > 1 && x != y && x^2 + y^2 == n3, {x, y}, Integers] != {}, Return[True]]; Pp = n3 - (P ~Complement~ {n3, n3/2}); (Pp ~Intersection~ P) != {} || Select[ Pp, IntegerQ[Sqrt[#]]&] != {}]; Select[Range[2, M], filterQ] (* Jean-François Alcover, Jun 21 2020, after Robert Israel *)
-
PARI
L=200^3; P=List(); for(x=2, sqrtnint(L,3), for(k=3, logint(L, x), listput(P, x^k))); #P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L. is(n,e=3)={for(i=1, #s=sum2sqr(n=n^e), vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1, #P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ The above P must be computed up to L >= n^3. For sum2sqr() see A133388.
Comments