cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304433 Numbers n such that n^3 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).

Original entry on oeis.org

5, 7, 8, 10, 12, 13, 14, 17, 20, 25, 26, 28, 29, 32, 33, 34, 37, 40, 41, 45, 48, 50, 52, 53, 56, 57, 58, 61, 63, 65, 68, 71, 72, 73, 74, 78, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 105, 106, 109, 112, 113, 114, 116, 117, 122, 125, 126, 128
Offset: 1

Views

Author

M. F. Hasler, May 12 2018

Keywords

Comments

Motivated by the search of solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d (b^(n+1) + d), where d is a perfect power.

Examples

			5^3 = 125 = 4^2 + 11^2; 7^3 = 10^2 + 3^5; 8^3 = 13^2 + 7^3, ...
		

Crossrefs

Cf. A001597 (perfect powers), A076467 (cubes and higher powers), A304434, A304435, A304436 (analog for n^4, n^5, n^6).

Programs

  • Maple
    N:= 200: # to get terms <= N
    N3:= N^3:
    P:= {seq(seq(x^k, k=3..floor(log[x](N3))), x=2..N)}:
    filter:= proc(n) local n3, Pp, x, y;
      n3:= n^3;
      if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=n3)]) <> [] then return true fi;
      Pp:= map(t ->n3-t, P minus {n3, n3/2});
       (Pp intersect P <> {}) or (select(issqr, Pp) <> {})
    end proc:
    select(filter, [$2..N]); # Robert Israel, Jun 01 2018
  • Mathematica
    M = 200;
    M3 = M^3;
    P = Union@ Flatten@ Table[Table[x^k, {k, 3, Floor[Log[x, M3]]}], {x, 2, M}];
    filterQ[n_] := Module[{n3, Pp, x, y}, n3 = n^3; If[Solve[x > 1 && y > 1 && x != y && x^2 + y^2 == n3, {x, y}, Integers] != {}, Return[True]]; Pp = n3 - (P ~Complement~ {n3, n3/2}); (Pp ~Intersection~ P) != {} || Select[ Pp, IntegerQ[Sqrt[#]]&] != {}];
    Select[Range[2, M], filterQ] (* Jean-François Alcover, Jun 21 2020, after Robert Israel *)
  • PARI
    L=200^3; P=List(); for(x=2, sqrtnint(L,3), for(k=3, logint(L, x), listput(P, x^k))); #P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L.
    is(n,e=3)={for(i=1, #s=sum2sqr(n=n^e), vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1, #P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ The above P must be computed up to L >= n^3. For sum2sqr() see A133388.