cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304436 Numbers n such that n^6 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 56, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 81, 82, 85, 87, 89, 90, 91, 95, 96, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 112, 113, 115, 116, 117, 119, 120, 122, 123, 125, 126, 130, 135, 136, 137, 140, 143, 145, 146, 148, 149, 150
Offset: 1

Views

Author

M. F. Hasler, May 25 2018

Keywords

Comments

Motivated by the search for solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching for solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d*(b^(n+1) + d), where d is a perfect power.

Examples

			5^6 = 35^2 + 120^2, 10^6 = 280^2 + 960^2, ...
		

Crossrefs

Cf. A304433, A304434, A304435, A001597 (perfect powers).

Programs

  • Maple
    LIM:=200^6: P:={seq(seq(x^k, k=3..floor(log[x](LIM))), x=2..floor(LIM^(1/3)))}:
    is_A304436:= proc(n) local N, S;  N:= n^6;  if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=N)]) <> [] then return true fi;  S:= map(t ->N-t, P minus {N, N/2});  (S intersect P <> {}) or (select(issqr, S) <> {})
    end proc: # adapted from code by Robert Israel for A304434
  • Mathematica
    LIM = 200^6;
    P = Union@ Flatten@ Table[Table[x^k, {k, 3, Floor[Log[x, LIM]]}], {x, 2, Floor[LIM^(1/3)]}];
    filterQ[n_] := Module[{M = n^6, S}, If[Solve[x > 1 && y > 1 && x^2 + y^2 == M, {x, y}, Integers] != {}, Return [True]]; S = M - (P ~Complement~ {M, M/2}); S ~Intersection~ P != {} || Select[S, IntegerQ[Sqrt[#]]&] != {}];
    Reap[For[n = 1, n <= 150, n++, If[filterQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Aug 12 2020, after Maple *)
  • PARI
    L=200^6;P=List(); for(x=2,sqrtnint(L,3),for(k=3,logint(L,x),listput(P,x^k)));#P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L.
    is(n,e=6)={for(i=1,#s=sum2sqr(n=n^e),vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1,#P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ Needs the above P computed up to L >= n^6. For sum2sqr() see A133388.