This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304442 #36 Jun 26 2022 14:03:25 %S A304442 1,1,2,2,4,2,5,2,7,3,5,2,13,2,5,4,11,2,13,2,12,4,5,2,28,3,5,5,12,2,18, %T A304442 2,17,4,5,4,44,2,5,4,24,2,18,2,12,10,5,2,63,3,9,4,12,2,34,4,24,4,5,2, %U A304442 67,2,5,10,27,4,18,2,12,4,14,2,120,2,5,7,12,4,18,2,54 %N A304442 Number of partitions of n in which the sequence of the sum of the same summands is constant. %C A304442 Said differently, these are partitions whose run-sums are all equal. - _Gus Wiseman_, Jun 25 2022 %H A304442 Seiichi Manyama, <a href="/A304442/b304442.txt">Table of n, a(n) for n = 0..10000</a> %F A304442 a(n) >= 2 for n > 1. %F A304442 a(n) = Sum_{d|n} binomial(A000005(n/d), d) for n > 0. %e A304442 a(72) = binomial(d(72),1) + binomial(d(36),2) + binomial(d(24),3) + binomial(d(18),4) + binomial(d(12),6) = 12 + 36 + 56 + 15 + 1 = 120, where d(n) is the number of divisors of n. %e A304442 --+----------------------+----------------------------------------- %e A304442 n | | Sequence of the sum of the same summands %e A304442 --+----------------------+----------------------------------------- %e A304442 1 | 1 | 1 %e A304442 2 | 2 | 2 %e A304442 | 1+1 | 2 %e A304442 3 | 3 | 3 %e A304442 | 1+1+1 | 3 %e A304442 4 | 4 | 4 %e A304442 | 2+2 | 4 %e A304442 | 2+1+1 | 2, 2 %e A304442 | 1+1+1+1 | 4 %e A304442 5 | 5 | 5 %e A304442 | 1+1+1+1+1 | 5 %e A304442 6 | 6 | 6 %e A304442 | 3+3 | 6 %e A304442 | 3+1+1+1 | 3, 3 %e A304442 | 2+2+2 | 6 %e A304442 | 1+1+1+1+1+1 | 6 %t A304442 Table[Length[Select[IntegerPartitions[n],SameQ@@Total/@Split[#]&]],{n,0,15}] (* _Gus Wiseman_, Jun 25 2022 *) %o A304442 (PARI) a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(n/d), d))); \\ _Michel Marcus_, May 13 2018 %Y A304442 Cf. A000005 (d(n)), A304405, A304406, A304428, A304430. %Y A304442 All parts are divisors of n, see A018818, compositions A100346. %Y A304442 For run-lengths instead of run-sums we have A047966, compositions A329738. %Y A304442 These partitions are ranked by A353833. %Y A304442 The distinct instead of equal version is A353837, ranked by A353838, compositions A353850. %Y A304442 The version for compositions is A353851, ranked by A353848. %Y A304442 Cf. A098504, A098859, A275870, A353832, A353847, A353864, A353932. %K A304442 nonn %O A304442 0,3 %A A304442 _Seiichi Manyama_, May 12 2018