cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304443 Coefficient of x^n in Product_{k>=1} (1+x^k)^(2*n).

This page as a plain text file.
%I A304443 #16 Oct 03 2023 09:25:36
%S A304443 1,2,10,62,394,2562,16966,113794,770442,5254334,36042250,248403586,
%T A304443 1718732998,11931569028,83064794746,579696375972,4054279504266,
%U A304443 28408328186508,199390547044342,1401564307833908,9865190079554954,69522550703432476,490484539061916794
%N A304443 Coefficient of x^n in Product_{k>=1} (1+x^k)^(2*n).
%H A304443 Vaclav Kotesovec, <a href="/A304443/b304443.txt">Table of n, a(n) for n = 0..1000</a>
%F A304443 a(n) ~ c * d^n / sqrt(n), where d = 7.21883059750200610514730564495768943165197819880185778427663522275469... and c = 0.300860732623379969554285615234449502629772950943717460278989499...
%t A304443 nmax = 25; Table[SeriesCoefficient[Product[(1+x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%t A304443 nmax = 25; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(2*n), {x, 0, n}], {n, 0, nmax}]
%t A304443 (* Calculation of constants {d,c}: *) {1/r, Sqrt[Derivative[0, 1][QPochhammer][-1, r*s] / (Pi*r*(Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s]^2 + 2*s*Derivative[0, 2][QPochhammer][-1, r*s]))]} /. FindRoot[{4*s == QPochhammer[-1, r*s]^2, 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Oct 03 2023 *)
%Y A304443 Cf. A022567, A026011, A270913, A304444.
%K A304443 nonn
%O A304443 0,2
%A A304443 _Vaclav Kotesovec_, May 12 2018