This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304450 #9 Aug 26 2018 18:40:43 %S A304450 2,6,12,18,24,30,48,54,60,72,90,96,108,120,150,162,180,192,210,240, %T A304450 270,288,300,360,384,420,432,450,480,486,540,600,630,648,720,750,768, %U A304450 810,840,864,960,972,1050,1080,1152,1200,1260,1350,1440,1458,1470,1500,1536 %N A304450 Numbers that are not perfect powers and whose prime factors span an initial interval of prime numbers. %C A304450 The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and aperiodic, meaning its multiplicities are relatively prime. %H A304450 Andrew Howroyd, <a href="/A304450/b304450.txt">Table of n, a(n) for n = 1..1000</a> %F A304450 Intersection of A007916 and A055932. %e A304450 Sequence of all normal aperiodic multisets begins %e A304450 2: {1} %e A304450 6: {1,2} %e A304450 12: {1,1,2} %e A304450 18: {1,2,2} %e A304450 24: {1,1,1,2} %e A304450 30: {1,2,3} %e A304450 48: {1,1,1,1,2} %e A304450 54: {1,2,2,2} %e A304450 60: {1,1,2,3} %e A304450 72: {1,1,1,2,2} %e A304450 90: {1,2,2,3} %e A304450 96: {1,1,1,1,1,2} %e A304450 108: {1,1,2,2,2} %e A304450 120: {1,1,1,2,3} %e A304450 150: {1,2,3,3} %e A304450 162: {1,2,2,2,2} %e A304450 180: {1,1,2,2,3} %e A304450 192: {1,1,1,1,1,1,2} %e A304450 210: {1,2,3,4} %e A304450 240: {1,1,1,1,2,3} %e A304450 270: {1,2,2,2,3} %e A304450 288: {1,1,1,1,1,2,2} %e A304450 300: {1,1,2,3,3} %e A304450 360: {1,1,1,2,2,3} %e A304450 384: {1,1,1,1,1,1,1,2} %t A304450 Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]===1&] %o A304450 (PARI) ok(n)={my(f=factor(n)[,1]); #f && !ispower(n) && #f==primepi(f[#f])} \\ _Andrew Howroyd_, Aug 26 2018 %Y A304450 Cf. A000005, A000740, A000837, A000961, A001597, A001694, A005117, A007916, A052409, A052410, A055932, A056239, A112798, A303431, A303546, A303945. %K A304450 nonn %O A304450 1,1 %A A304450 _Gus Wiseman_, May 12 2018