This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304462 #32 Jun 24 2018 12:19:50 %S A304462 1,-1,-1,2,-1,5,-5,-1,6,3,-21,14,-1,7,7,-28,-28,84,-42,-1,8,8,-36,4, %T A304462 -72,120,-12,180,-330,132,-1,9,9,-45,9,-90,165,-45,-45,495,-495,165, %U A304462 -990,1287,-429 %N A304462 Coefficients of the compositionally inverted power series g:=f^{-1} of a formal power series f with the starting coefficients f_0=0 and f_1=1 expressed as polynomials in the coefficients f_2, f_3, ... of the given power series f(X) = X + f_2*X^2 + f_3*X^3 + ... %C A304462 If g is taken as g(X) = X + g_2*X^2 + g_3*X^3 + ... then the compositions are (g circle f)(X) = g(f(X)) = X and (f circle g)(X) = f(g(X)) = X. %C A304462 Lexicographically descending in the rows, i.e., f(5) f(2)^2 f(1)^3 (-36) > f(4)^2 f(1)^4 (+4). %C A304462 This is another version of A111785, where each row is sorted lexicographically ascending, i.e., f(1)^4 f(4)^2 (+4) < f(1)^3 f(2)^2 f(5) (-36). %D A304462 Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, Part I. New York: McGraw-Hill, 1953. %F A304462 g(n) := f(1)^(-n) Sum_{j(2), j(3), ...} (-1)^{j(2) + j(3) + ...} ((n-1 + j(2) + j(3) + ...)!)/(n! j(2)! j(3)! ...) ((f(2))/(f(1))^j(2) ((f(3))/(f(1)))^j(3) ... %F A304462 The sum is to be taken over all combinations of the exponents {j(2), j(3), j(4), ...} with j(2) + 2j(3) + 3j(4) + ... = n-1. See Morse, P. M. and Feshbach, H. pp. 411-413. %e A304462 Matrix lexicographically descending in the rows: %e A304462 for instance f(5) f(2)^2 f(1)^3 (-36) > f(4)^2 f(1)^4 (+4) %e A304462 1; %e A304462 -1; %e A304462 -1,2; %e A304462 -1,5,-5; %e A304462 -1,6,3,-21,14; %e A304462 -1,7,7,-28,-28,84,-42; %e A304462 -1,8,8,-36,4,-72,120,-12,180,-330,132; %e A304462 -1,9,9,-45,9,-90,165,-45,-45,495,-495,165,-990,1287,-429; %e A304462 -1,10,10,-55,10,-110,220,5,-110,-55,660,-715,-55,330,660,-2860,2002,55,-1430,5005,-5005,1430; %o A304462 (MuPAD) %o A304462 alfa:=["a","b","c","d","e","f","g","h","i","j","k"]: %o A304462 byRow := proc(od, // original weighted degree %o A304462 wd, // remaining weighted degree %o A304462 il, // index of last indeterminate %o A304462 jl, // exponent of last indeterminate %o A304462 ni, // remaining number of indeterminates %o A304462 lx) // lexicographic string %o A304462 local j; %o A304462 begin %o A304462 if wd > 1 then %o A304462 for j from min(wd,il) downto 2 do: %o A304462 if j >= il then %o A304462 j:=il: // stay at the latest indeterminate %o A304462 byRow(od,wd-j+1,j,jl+1,ni-1,lx.alfa[j]): %o A304462 else // advance to next indeterminate %o A304462 byRow(od,wd-j+1,j,1 ,ni-1,lx.alfa[j]): %o A304462 end_if: %o A304462 end_for: %o A304462 else // output the monomial %o A304462 dd:=1: d0:="+": dc:=1: %o A304462 for j from length(lx)-1 downto 0 do: %o A304462 d1:=substring(lx,j): %o A304462 if d1 <> d0 then %o A304462 d0:=d1: dc:=1: dd:=-dd: %o A304462 else // the indeterminate changes %o A304462 dc:=dc+1: dd:=-dd*dc: %o A304462 end_if: %o A304462 end_for: %o A304462 nn:=fact(2*od-ni-2)/fact(od): // rising factorial %o A304462 // One row of A304462: coefficients of the lexicographically descending monomials: %o A304462 print(nn/dd): %o A304462 // One row of A304462: coefficients of the lexicographically descending monomials %o A304462 // plus some representation of the monomials themselves: %o A304462 // for j from 1 to ni do: %o A304462 // lx:=lx."a": %o A304462 // end_for: %o A304462 // print(nn/dd,lx): // monomial lx %o A304462 end_if: %o A304462 end_proc: %o A304462 // Output the 8th row: %o A304462 n:=8: %o A304462 byRow(n,n,n,0,n-1,"") %Y A304462 Cf. A111785. %K A304462 tabf,sign %O A304462 0,4 %A A304462 _Herbert Eberle_, May 13 2018