A304464 Start with the normalized multiset of prime factors of n > 1. Given a multiset, take the multiset of its multiplicities. Repeat this until a multiset of size 1 is obtained. a(n) is the unique element of this multiset.
0, 1, 2, 2, 3, 2, 4, 3, 2, 2, 5, 2, 6, 2, 2, 4, 7, 2, 8, 2, 2, 2, 9, 2, 2, 2, 3, 2, 10, 3, 11, 5, 2, 2, 2, 2, 12, 2, 2, 2, 13, 3, 14, 2, 2, 2, 15, 2, 2, 2, 2, 2, 16, 2, 2, 2, 2, 2, 17, 2, 18, 2, 2, 6, 2, 3, 19, 2, 2, 3, 20, 2, 21, 2, 2, 2, 2, 3, 22, 2, 4, 2, 23
Offset: 1
Keywords
Examples
Starting with the normalized multiset of prime factors of 360, we obtain {1,1,1,2,2,3} -> {1,2,3} -> {1,1,1} -> {3}, so a(360) = 3.
Crossrefs
Programs
-
Mathematica
Table[If[n===1,0,NestWhile[Sort[Length/@Split[#]]&,If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],Length[#]>1&]//First],{n,100}]
Formula
a(prime(n)) = n.
a(p^n) = n where p is any prime number and n > 1.
a(product of n > 1 distinct primes) = n.
Comments